

Iuliana Cosmina

Java 17 for Absolute Beginners
Learn the Fundamentals of Java Programming
2nd ed.

Iuliana Cosmina
Edinburgh, UK

ISBN 978-1-4842-7079-0 e-ISBN 978-1-4842-7080-6
https://doi.org/10.1007/978-1-4842-7080-6

© Iuliana Cosmina 2022

This work is subject to copyright. All rights are reserved by the
Publisher, whether the whole or part of the material is concerned,
speci�ically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on micro�ilms or in any other
physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks,
service marks, etc. in this publication does not imply, even in the
absence of a speci�ic statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general
use.

The publisher, the authors and the editors are safe to assume that the
advice and information in this book are believed to be true and accurate
at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the
material contained herein or for any errors or omissions that may have
been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional af�iliations.

This Apress imprint is published by the registered company APress
Media, LLC part of Springer Nature.

https://doi.org/10.1007/978-1-4842-7080-6

The registered company address is: 1 New York Plaza, New York, NY
10004, U.S.A.

To my �irst teacher, Moţa Dumitra.
You’ve instilled in me the hunger to learn.
Thank you!

Any source code or other supplementary material referenced by the
author in this book is available to readers on GitHub. For more detailed
information, please visit http:// www. apress. com/ source-code.

Any source code or other supplementary material referenced by the
author in this book is available to readers on GitHub via the book’s
product page, located at www.apress.com/9781484270790. For
more detailed information, please visit
http://www.apress.com/source-code.

http://www.apress.com/source-code
http://www.apress.com/9781484270790
http://www.apress.com/source-code

Acknowledgments
Writing books for beginners is tricky, because as an experienced
developer, it might be dif�icult to �ind the right examples and explain
them in such a way that even a nontechnical person would easily
understand them. That is why I am profoundly grateful to the great
people at Apress who have been with me for the full journey of writing
this book for all the support and advice they provided to keep this book
at beginner level. A special thank you to the tech reviewer of this book,
Manuel Jordan; his recommendations and corrections were crucial for
the �inal form of the book.

Apress has published many of the books that I have read and used
to improve myself professionally. It is a great honor to publish my
seventh book with Apress, and it gives me enormous satisfaction to be
able to contribute to the making of a new generation of Java developers.

A special thank you to my Cloudsoft team, for being so supportive
with my passion for writing technical books. Thank you all for being
supportive and making sure I still had some fun while writing this book.
You have no idea how dear you are to me.

A very grateful thank you to Vesa Kauranen, Ivan Duka, Süleyman
Onur Otlu, and all developers who have identi�ied bugs in the text and
the code and helped me make this edition of the book better than the
previous one.

And a very special thank you in advance to all the passionate Java
developers who will �ind mistakes in the book and be so kind to write
me about them, so that I can provide an erratum and make this book
even better.

Finally, I want to thank the Bogza-Vlad family: Monica, Tinel,
Cristina, and Stefan. You are all close to my heart and I miss you often.

Table of Contents
Chapter 1: An Introduction to Java and Its History

Who This Book Is For

How This Book Is Structured

Conventions

When Java Was Owned By Sun Microsystems

How Is Java Portable?

Sun Microsystem’s Java Versions

Oracle Takes Over

Java 7

Java 8

Java 9

Java 10

Java 11

Java 12

Java 13

Java 14

Java 15

Java 16

Java 17

Prerequisites

Summary

Chapter 2: Preparing Your Development Environment

Installing Java

The JAVA_ HOME Environment Variable

JAVA_ HOME on Windows

JAVA_ HOME on macOS

JAVA_ HOME on Linux

Installing Maven

Installing Git

Installing a Java IDE

Summary

Chapter 3: Getting Your Feet Wet

Core Syntax Parts

Using JShell

Java Fundamental Building Blocks

Packages

Access Modi�iers

Modules

How to Determine the Structure of a Java Project

Summary

Chapter 4: Java Syntax

Base Rules of Writing Java Code

Package Declaration

Import Section

Java Grammar

Java Identi�iers and Variables

Java Comments

Java Types

Summary

Java Keywords

Chapter 5: Data Types

Stack and Heap Memory

Introduction to Java Data Types

Primitive Data Types

Reference Data Types

Java Primitive Types

Date Time API

Collections

Concurrency Speci�ic Types

Summary

Chapter 6: Operators

The Assignment Operator

Explicit Type Conversion (type) and instanceof

Numerical Operators

Unary Operators

Binary Operators

Relational Operations

Bitwise Operators

Bitwise NOT

Bitwise AND

Bitwise Inclusive OR

Bitwise Exclusive OR

Logical Operators

Shift Operators

The << Shift Left Operator

The >> Signed Shift Right Operator

The >>> Unsigned Shift Right Operator

The Elvis Operator

Summary

Chapter 7: Controlling the Flow

if-else Statement

switch Statement

Looping Statements

for Statement

while Statement

do-while Statement

Breaking Loops and Skipping Steps

break Statement

continue Statement

return Statement

Controlling the Flow Using try-catch Constructions

Summary

Chapter 8: The Stream API

Introduction to Streams

Creating Streams

Creating Streams from Collections

Creating Streams from Arrays

Creating Empty Streams

Creating Finite Streams

Streams of Primitives and Streams of Strings

Short Introduction to Optional<T>

How to Use Streams Like a Pro

Terminal Functions: forEach and forEachOrdered

Intermediate Operation: filter and Terminal Operation:
toArray

Intermediate Operation: map, flatMap and Terminal
Operation: collect

Intermediate Operation: sorted and Terminal Operation:
findFirst

Intermediate Operation: distinct() and Terminal
Operation: count()

Intermediate Operation: limit(..) and Terminal
Operations: min(..), max(..)

Terminal Operations: sum() and reduce(..)

Intermediate Operation: peek(..)

Intermediate Operation: skip(..) and Terminal
Operations: findAny(), anyMatch(..), allMatch(..)
and noneMatch(..)

Debugging Stream Code

Summary

Chapter 9: Debugging, Testing, and Documenting

Debugging

Logging

Logging with System.out.print

Debug Using Assertions

Step-By-Step Debugging

Inspecting Running Application Using Java Tools

Accessing the Java Process API

Testing

Testing Code Location

Documenting

Summary

Chapter 10: Making Your Application Interactive

Reading Data from the Command Line

Reading User Data Using System.in

Using java.util.Scanner

Using java.io.Console

Build Applications Using Swing

Introducing JavaFX

Internationaliza tion

Building a Web Application

Java Web Application with an Embedded Server

Java Web Application on a Standalone Server

Summary

Chapter 11: Working With Files

Java IO and NIO APIs

File Handlers

Path Handlers

Reading Files

Using Scanner to Read Files

Using Files Utility Methods to Read Files

Using Readers to Read Files

Using InputStream to Read Files

Writing Files

Writing Files Using Files Utility Methods

Using Writer to Write Files

Using OutputStream to Write Files

Using NIO to Manage Files

Serialization and Deserialization

Byte Serialization

XML Serialization

JSON Serialization

The Media API

Using JavaFX Image Classes

Summary

Chapter 12: The Publish-Subscribe Framework

Reactive Programming and the Reactive Manifesto

Using the JDK Reactive Streams API

Reactive Streams Technology Compatibility Kit

Using Project Reactor

Summary

Chapter 13: Garbage Collection

Garbage Collection Basics

Oracle Hotspot JVM Architecture

How Many Garbage Collectors Are There?

Working with GC from the Code

Using the finalize() Method

Heap Memory Statistics

Using Cleaner

Preventing GC from Deleting an Object

Using Weak References

Garbage Collections Exceptions and Causes

Summary

Appendices

Appendix A

Modules

Advanced Module Con�igurations

Appendix B

Index

About the Author
Iuliana Cosmina
is currently a software engineer for
Cloudsoft, Edinburgh. She has been
writing Java code since 2002. She has
contributed to various types of
applications, such as experimental
search engines, ERPs, track and trace,
banking, and cloud orchestration. During
her career she has been a teacher, team
leader, software architect, DevOps
professional, and software manager.

She is a Spring-certi�ied professional,
as de�ined by Pivotal, the makers of
Spring Framework, Boot, and other tools.
She considers Spring the best Java
framework to work with. When she is
not programming, she spends her time
reading, blogging, learning to play piano,
travelling, hiking, or biking.

You can �ind some of her personal work on her GitHub account at
https://github.com/iuliana.
You can �ind her complete CV on her LinkedIn account at
https://linkedin.com/in/iulianacosmina.
You can contact her at Iuliana.Cosmina@gmail.com.

https://github.com/iuliana
https://linkedin.com/in/iulianacosmina

About the Technical Reviewer
Manuel Jordan Elera
is an autodidactic developer and
researcher who enjoys learning new
technologies for his own experiments
and creating new integrations. Manuel
won the Springy Award–Community
Champion and Spring Champion 2013. In
his free time he reads the Bible and
composes music on his guitar. Manuel is
known as dr_pompeii. He has tech-
reviewed numerous books for Apress,
including Pro Spring MVC with Web�lux
(2020), Pro Spring Boot 2 (2019), Rapid
Java Persistence and Microservices
(2019), Java Language Features (2018),
Spring Boot 2 Recipes (2018), and Java
APIs, Extensions and Libraries (2018). Read his 13 detailed tutorials
about many Spring technologies, contact him through his blog at
http://www.manueljordanelera.blogspot.com, and follow
him on his Twitter account, @dr_pompeii.

http://www.manueljordanelera.blogspot.com/

(1)

© Iuliana Cosmina 2022
I. Cosmina, Java 17 for Absolute Beginners
https://doi.org/10.1007/978-1-4842-7080-6_1

1. An Introduction to Java and Its
History

Iuliana Cosmina1

Edinburgh, UK

According to Google Search, at the end of 2020, 9492 companies
reportedly use Java in their tech stacks, including Google and the
company that I, the author of this book, worked for while this book was
being written. Even after 25 years, Java continues to be one of the most
in�luential programming languages. It all started in 1990, when an
American company that was leading the revolution in computer
industry decided to gather its best engineers to design and develop a
product that would allow them to become an important player in the
new emerging Internet world. Among those engineers was James
Arthur Gosling, a Canadian computer scientist who is recognized as the
father of the Java programming language. It would take �ive years of
design, programming, and one renaming (from Oak to Java because of
trademark issues), but �inally, in January 1996,1 Java 1.0 was released
for Linux, Solaris, Mac and Windows.

The general tendency when reading a technical book is to skip the
introductory chapter altogether. But in this case I think it would be a
mistake. I was never much interested in the history of Java until I wrote
this book. I knew that James Gosling was the creator and that Oracle
bought Sun, and that was pretty much it. I never cared much about how
the language evolved, where the inspiration came from, or how one
version was different from another. I started learning Java at version
1.5, and I took a lot of things in the language for granted. So when I was
assigned to a project running on Java 1.4 I was quite confused, because I

https://doi.org/10.1007/978-1-4842-7080-6_1

did not know why parts of the code I wrote was not compiling.
Although the IT industry is moving very fast, there will always be that
one client that has a legacy application. Knowing the peculiarities of
each Java version is an advantage, because you know the issues when
performing a migration.

When I started doing research for this book, I was mesmerized. The
history of Java is interesting because it is a tale of incredible growth,
success of a technology, and an example of how a clash of egos in
management almost killed the company that created it. Currently Java
is the most-used technology in software development, and it is simply
paradoxical that the company that gave birth to it no longer exists.

This chapter describes each version of Java, tracking the evolution
of the language and the Java Virtual Machine.

Who This Book Is For
Most Java books for beginners start with the typical Hello World!
example depicted in Listing 1-1.

public class HelloWorld {

 public static void main(String[] args) {

 System.out.println("Hello World!");

 }

}

Listing 1-1 The Most Common Java Beginner Code Sample

This code, when executed, prints Hello World! in the console. But if
you have bought this book it is assumed that you want to develop real
applications in Java, and have a real chance when applying for a
position as a Java developer. If this is what you want and if this is who
you are, a beginner with the wits and the desire to make full use of this
language’s power, then this book is for you. And this is why I will give
you enough credit to start this book with a more complex example.

Java is a language with a syntax that is readable and based on the
English language. So if you have logical thinking and a little knowledge
of the English language, it should be obvious to you what the code in
Listing 1-2 does without even executing it.

package com.apress.ch.one.hw;

import java.util.List;

public class Example01 {

 public static void main(String[] args) {

 List<String> items = List.of("1", "a",

"2", "a", "3", "a");

 items.forEach(item -> {

 if (item.equals("a")) {

 System.out.println("A");

 } else {

 System.out.println("Not A");

 }

 });

 }

}

Listing 1-2 The Java Beginner Code Sample a Smart Beginner Deserves

In this code example, a list of text values is declared; then the list is
traversed, and when a text is equal to “a”, the letter “A” is printed in the
console; otherwise, “Not A” is printed.

If you are an absolute beginner to programming, this book is for
you, especially because the sources attached to this book make use of
algorithms and design patterns commonly used in programming. So if
your plan is to get into programming and learn a high-level
programming language, read the book, run the examples, write your
own code, and you should have a good head start.

If you already know Java you can use this book too, because it covers
syntax and under-the-bonnet details for Java versions up to 17 (the
Early Access Program or EAP2 release), and you will surely �ind
something you did not know.

How This Book Is Structured
The chapter you are currently reading is an introductory one that
covers a small part of Java history, showing you how the language has
evolved and providing a glimpse into its future. Also, the mechanics of
executing a Java application are covered, so that you are prepared for
Chapter 2. The next chapter will show you how to set up your
development environment and will introduce you to a �irst simple
application.

Starting with Chapter 3, fundamental parts of the language will be
covered: packages, modules, classes, interfaces, annotations objects,
operators, data types, records, statements, streams, lambda
expressions, and so on.

Starting with Chapter 8, interactions with external data sources are
covered: reading and writing �iles, serializing/deserializing objects, and
testing and creating an user interface.

Chapter 12 is dedicated fully to the publish-subscribe framework
introduced in Java 9 and reactive programming.

Chapter 13 will cover the Garbage Collector.
All the sources used in the listings in this book, and some that did

not make it because the book must be kept to a reasonable size, are part
of a project named java-17-for-absolute-beginners. This
project is organized in modules (thus it is a multimodule project) that
are linked to each other and have to be managed by something called
Maven. Maven is something we developers call a build tool, and it
provides the capability to build projects containing a lot of source code.
To build a project means transforming the code written into something
that can be executed. I choose to use multimodule projects for the
books I write because it is easier to build them and also because
common elements can be grouped together, keeping the con�iguration
of the project simple and nonrepetitive. Also, by having all the sources
organized in one multimodule project, you get the feedback if the
sources are working or not as soon as possible, and you can contact the
author and ask them to update them. I know that having a build tool
introduces a certain level of complexity, but it gives you the opportunity
to get comfortable with a development environment very similar to
what you will work in as an employee.

Conventions
This book uses a number of formatting conventions that should make it
easier to read. To that end, the following conventions are used within
the book:

code or concept names in paragraphs appear as follows:
java.util.List

code listings appear as follows:

public static void main(String[] args) {

 System.out.println("Hello World!");

}

logs in console outputs will appear as follows:

01:24:07.809 [main] INFO c.a.Application -

Starting Application

01:24:07.814 [main] DEBUG c.a.p.c.Application -

Running in debug mode

{xx} is a placeholder; the xx value is a pseudo-value giving a hint
about the real value that should be used in the command or
statement.

 appears in front of paragraphs you should pay speci�ic attention
to. There are similar icons for tips and warnings.
Italic font is used for humorous metaphors and expressions.
Bold font is used for Chapter references and important terms.

As for my style of writing, I like to write my books in the same way I
have technical conversations with colleagues and friends: sprinkling
jokes throughout, giving production examples, and making analogies to
nonprogramming situations. Because programming is nothing but just
another way to model the real world.

When Java Was Owned By Sun Microsystems

The �irst stable version of Java was released in 1996. Up until that point,
there was a small team named the Green Team that worked on a
prototype language named Oak, which was introduced to the world
with a working demo—an interactive handheld home entertainment
controller called the Star7. The star of the animated touch-screen user
interface was a cartoon character named Duke, created by one of the
team’s graphic artists, Joe Palrang. Over the years, Duke (Figure 1-1)
has become the of�icial Java technology mascot, and every JavaOne
conference (organized by Oracle once a year) has its own Duke mascot
personality.

Figure 1-1 Duke, the Java of�icial mascot (image source: https:// oracle. com)

The Green Team released Java to the world via the Internet, because
that was the fastest way to create widespread adoptions. You can
imagine that they jumped for joy every time somebody downloaded it,
because it meant people were interested in it. There are a few other
advantages making software open source, such as the fact that
contributions and feedback are provided by a big number of people
from all over the world. Thus, for Java, this was the best decision, as it
shaped the language a lot of developers are using today. Even after 25
years, Java is still among the top-three most-used programming
languages.

The Green Team was working for an American company named Sun
Microsystems and was founded in 1982. It guided the computer
revolution by selling computers, computer parts, and software. One of
their greatest achievements is the Java programming language. In

Figure 1-2, you can see the company logo3 that was used since Java’s
birth year until it was acquired by Oracle in 2010.

Figure 1-2 The Sun Microsystems logo (image source: https:// en. wikipedia. org/ wiki/ Sun_
Microsystems)

It is quite dif�icult to �ind information about the �irst version of Java,
but dedicated developers that witnessed its birth, when the Web was
way smaller and full of static pages, did create blogs and shared their
experience with the world. It was quite easy for Java to shine with its
applets that displayed dynamic content that interacted with the user.
But because the development team thought bigger, Java became much
more than a Web programming language. In trying to make applets run
in any browser, the team found a solution to a common problem:
portability .

Developers nowadays face a lot of headaches when developing
software that should run on any operating system. And with the mobile
revolution, things got really tricky. In Figure 1-3 you can see an abstract
drawing of what is believed to be the �irst Java Logo.

https://en.wikipedia.org/wiki/Sun_Microsystems

Figure 1-3 The �irst Java logo, 1996–2003 (image source: https:// oracle. com/)

Java 1.0 was released at the �irst edition of the JavaOne conference
with over 6000 attendees. Java started out as a language named Oak.4
This language was really similar to C++ and was designed for handheld
devices and set-top boxes. It evolved into the �irst version of Java, which
provided developers some advantages which C++ did not:

security : In Java, there is no danger of reading bogus data when
accidentally going over the size of an array.
automatic memory management : A Java developer does not have
to check if there is enough memory to allocate for an object and then
deallocate it explicitly; the operations are automatically handled by
the garbage collector. This also means that pointers are not
necessary.
simplicity: There are no pointers, unions, templates, structures.
Mostly anything in Java can be declared as a class. Also, confusion
when using multiple inheritance is avoided by modifying the
inheritance model and not allowing multiple class inheritance.

https://oracle.com/

support for multithreaded execution: Java was designed from the
start to support development of multithreaded software.
portability : One of the most known Java mottos is Write once, run
anywhere (WORA). This is made possible by the Java Virtual
Machine.

All this made Java appealing for developers, and by 1997, when Java
1.1 was released, there were already approximately 400,000 Java
developers in the world. The JavaOne conference had 10,000 attendees
that year. The path to greatness was set. Before going further in our
analysis of each Java version, let’s clarify a few things.

How Is Java Portable?
I mentioned a few times that Java is portable and that Java programs
can run on any operating system. It is time to explain how this is
possible. Let’s start with a simple drawing, like the one in Figure 1-4.

Figure 1-4 Running a Java program on multiple platforms

Java is what we call a high-level programming language that
allows a developer to write programs that are independent of a

particular type of computer. High-level languages are easier to read,
write, and maintain. But their code must be translated by a compiler or
interpreted into machine language (unreadable by humans because is it
made up of numbers) to be executed, because that is the only language
that computers understand.

In Figure 1-4, notice that on top of the operating systems, a JVM is
needed to execute a Java program. JVM stands for Java Virtual
Machine , which is an abstract computing machine that enables a
computer to run a Java program. It is a platform-independent execution
environment that converts Java code into machine language and
executes it.

So what is the difference between Java and other high-level
languages? Well, other high-level languages compile source code
directly into machine code that is designed to run on a speci�ic
microprocessor architecture or operating system, such as Windows or
UNIX. What JVM does is to mimic a Java processor, making it possible
for a Java program to be interpreted as a sequence of actions or
operating system calls on any processor regardless of the operating
system. Sure, the compiling step makes Java slower than a pure
compiled language like C++, but the advantage was and is still beautiful.
Also, Java is not the only member of the JVM languages family. Groovy,
Scala, Kotlin, and Clojure are all very popular programming languages
that run on the JVM.

Because the Java compiler was mentioned, we have to get back to
Java 1.1, which was widely used even as new versions were released. It
came with an improved Abstract Window Toolkit (AWT) graphical API
(collections of components used for building applets), inner classes,
database connectivity classes (JDBC model), classes for remote calls
(RMI), a special compiler for Microsoft platforms named JIT5 Compiler
(for Just In Time), support for internationalization, and Unicode. What
also made it so widely embraced is that shortly after Java was released,
Microsoft licensed it and started creating applications using it. The
feedback helped further development of Java, and thus Java 1.1 was
supported on all browsers of the time, which is why it was so widely
deployed.

 A lot of terms used in the introduction of the book might seem
foreign to you now, but as you read the book, more information is
introduced, and these words will start to make more sense. For now,
just keep in mind that every new Java version has something more
than the previous version, and at that time, every new component
was a novelty.

So what exactly happens to the developer-written Java code until
the actual execution? The process is depicted in Figure 1-5.

Figure 1-5 From Java code to machine code

Java code is compiled and transformed to bytecode that is then
interpreted and executed by the JVM on the underlying operating
system.

 Java is a compiled and interpreted general-purpose
programming language with numerous features that make it well
suited for the web.

Now that we’ve covered how Java code is executed, let’s go back to
some more history.

Sun Microsystem’s Java Versions
The �irst stable Java version released by Sun Microsystems could be
downloaded from the website as an archive named JDK, and its version
at the time was 1.0.2. JDK is an acronym for Java Development Kit. This
is the software development environment used for developing Java
applications and applets. It includes the Java Runtime Environment
(JRE) , an interpreter (loader), a compiler, an archiver, a documentation
generator, and other tools needed for Java development. We will get
into this more in the section about installing JDK on your computer.

Starting with version 1.2, released in 1998, Java versions were given
codenames.6 The Java version 1.2 codename was Playground. It was a
massive release, and this was the moment when people started talking
about the Java 2 Platform. Starting with this version, the releases up to
J2SE 5.0 were renamed, and J2SE replaced JDK because the Java
platform was now composed of three parts:

J2SE (Java 2 Platform, Standard Edition), which later became JSE, a
computing platform for the development and deployment of portable
code for desktop and server environments.
J2EE (Java 2 Platform, Enterprise Edition), which later became JEE, a
set of speci�ications extending Java SE with speci�ications for
enterprise features such as distributed computing and web services.
J2ME (Java 2 Platform, Micro Edition), which later became JME, a
computing platform for development and deployment of portable
code for embedded and mobile devices.

With this release, the JIT compiler became part of Sun
Microsystem’s JVM (which basically means turning code into executable
code became a faster operation and the generated executable code was
optimized), the Swing graphical API was introduced as a fancy
alternative to AWT (new components to create fancy desktop
applications were introduced), and the Java Collections Framework (for
working with sets of data) was introduced.

J2SE 1.3 was released in 2000 with the codename Kestrel (maybe
as a reference to the newly introduced Java sound classes). This release
also contained Java XML APIs.

J2SE 1.4 was released in 2002 with the codename Merlin. This is
the �irst year that the Java Community Process members were involved
in deciding which features the release should contain, and thus the
release was quite consistent. This is the �irst release of the Java
platform developed under the Java Community Process as JSR 59.7 The
following features are among those worth mentioning:

Support for IPv6: Basically applications that run over a network can
now be written to work using networking protocol IPv6.
Nonblocking IO : IO is an acronym for input-output, which refers to
reading and writing data—a very slow operation. Making IO
nonblocking means to optimize these operations to increase speed of
the running application.
Logging API : Operations that get executed need to be reported to a
�ile or a resource, which can be read in case of failure to determine
the cause and �ind a solution. This process is called logging and
apparently only in this version components to support this operation
were introduced.
Image processing API : Components developers can use this to
manipulate images with Java code.

Java’s coffee cup logo made its entrance in 2003 (between releases
1.4 and 5.0) at the JavaOne conference. You can see it in Figure 1-6.8

Figure 1-6 Java of�icial logo 2003-2006 (image source: https:// oracle. com)

J2SE 5.0 was released in 2004 with the codename Tiger. Initially it
followed the typical versioning and was named 1.5, but because this
was a major release with a signi�icant number of new features that

https://oracle.com/

j g
proved a serious improvement of maturity, stability, scalability, and
security of the J2SE, the version was labeled 5.0 and presented like that
to the public, even if internally 1.5 was still used. For this version and
the next two, it was considered that 1.x = x.0. Let’s list those features
because most of them are covered in the book:

Generics provide support for compile-time (static) type safety for
collections and eliminates the need for most type conversions (which
means the type used in a certain context is decided while the
application is running, we have a full section about this in Chapter
5).
Annotations , also known as metadata , are used to tag classes and
methods to allow metadata-aware utilities to process them (which
means a component is labeled as something another component
recognizes and does speci�ic operations with it).
Autoboxing/unboxing refers to the automatic conversion between
primitive types and matching object types (wrappers), also covered
in Chapter 5.
Enumerations de�ine static �inal ordered sets of values using the
enum keyword; covered in Chapter 4.
Varargs provide a shorthand for methods that support an arbitrary
number of parameters of one type. The last parameter of a method is
declared using a type name followed by three dots (e.g.,
String...), which implies that any number of arguments of that
type can be provided and are placed into an array; covered in
Chapter 3.
Enhanced for each loop: used to iterate over collections and arrays
too, also covered in Chapter 5.
Improved semantics for multithreaded Java Programs, covered in
Chapter 7.
Static imports also covered in Chapter 4.
Improvements for RMI (not covered in the book), Swing (Chapter
10), concurrency utilities (Chapter 7), and introduction of Scanner
class (Chapter 11).

Java 5 was the �irst available for Apple Mac OS X 10.4, and the
default version installed on Apple Mac OS X 10.5. There were a lot of
updates9 released for this version up until 2015, to �ix issues related to

security and performance. It was a pretty buggy release, and it is pretty
understandable, since quite a lot of features were developed in only two
years.

In 2006, Java SE 6 was released with a little delay, codename
Mustang. Yes, this was yet another rename, and yes, yet again a serious
number of features were implemented in quite a short period of time. A
lot of updates were required afterward to �ix the existing issues. This
was the last major Java release released by Sun Microsystems, as Oracle
acquired this company in January 2010. The most important features in
this release are listed next.

Dramatic performance improvements for the core platform
(applications run faster, need less memory or CPU to execute).
Improved web service support (optimized components that are
required for development of web applications).
JDBC 4.0 (optimized components that are required for development
of applications using databases).
Java Compiler API (from your code you can call components that are
used to compile code).
Many GUI improvements, such as integration of SwingWorker in
the API, table sorting and �iltering, and true Swing double-buffering
(eliminating the gray-area effect); overall, improvement of
components used to create interfaces for desktop applications.

Shortly after (in Java terms), in December 2008, JavaFX 1.0 SDK was
released. JavaFX is suitable for creating graphical user interfaces for any
platform. The initial version was a scripting language. Until 2008, in
Java there were two ways to create a user interface:

Using AWT (Abstract Window Toolkit) components, which are
rendered and controlled by a native peer component speci�ic to the
underlying operating system; that is why AWT components are also
called heavyweight components.
Using Swing components, which are called lightweight because they
do not require allocation of native resources in the operating
system’s windowing toolkit. The Swing API is a complimentary
extension of AWT.

For the �irst versions, it was never really clear whether JavaFX
would actually have a future and if it would grow up to replace Swing.
The management turmoil inside Sun did not help in de�ining a clear
path for this project either.

Oracle Takes Over
Although Sun Microsystems won a lawsuit against Microsoft in which
they agreed to pay $20 million for not implementing the Java 1.1
standard completely, in 2008 the company was in such poor shape that
negotiations for a merger with IBM and Hewlett-Packard began. In
2009, Oracle and Sun announced that they agreed on the price: Oracle
would acquire Sun for $9.50 per share in cash, which amounted to a
$5.6 billion offer. The impact was massive. A lot of engineers quit,
including James Gosling, the father of Java, which made a lot of
developers question the future of the Java platform.

Java 7
Java SE 7, codename Dolphin , was the �irst Java version released by
Oracle in 2011. It was the result of an extensive collaboration between
Oracle engineers and members of the worldwide Java communities,
such as the OpenJDK Community and the Java Community Process
(JCP). It contained a lot of changes, but a lot fewer than developers
expected. Considering the long period between the releases, the
expectations were pretty high. Project Lambda, which was supposed to
allow usage of lambda expressions in Java (this leads to considerable
syntax simpli�ication in certain cases), and Jigsaw (making JVM and the
Java application modular; there is a section in Chapter 3 about them)
were dropped. Both were released in future versions.

The following are the most notable features in Java 7:

JVM support for dynamic languages with the new invoke dynamic
bytecode (basically, Java code can use code implemented in non-Java
languages such as Python, Ruby, Perl, Javascript, and Groovy).
Compressed 64-bit pointers (internal optimization of the JVM, so less
memory is consumed)
Small language changes grouped under project Coin:

– strings in switch statements (covered in Chapter 7)
– automatic resource management in try-statement (covered in

Chapter 5)
– improved type inference for generics—the diamond <> operator

(covered in Chapter 5)

binary integer literals: integer numbers can be represented directly
as binary numbers, using the form 0b (or 0B) followed by one or
more binary digits (0 or 1) (covered in Chapter 5).

– multiple exceptions handling improvements (covered in Chapter
5)

Concurrency improvements
New I/O library (new classes added to read/write data to/from �iles,
covered in Chapter 8)
Timsort algorithm was introduced to sort collections and arrays of
objects instead of merge sort because it has better performance.
Better performance usually means reducing of consumed resources:
memory and/or CPU, or reducing the time needed for execution.

Continuing development on a project with almost none of the
original development team involved must have been a very tough job.
That is obvious because of the 161 updates that followed; most of them
were needed to �ix security issues and vulnerabilities.

JavaFX 2.0 was released with Java 7. This con�irmed that the JavaFX
project had a future with Oracle. As a major change, JavaFX stopped
being a scripting language and became a Java API. This meant that
knowledge of the Java language syntax would be enough to start
building user graphical interfaces with it. JavaFX started gaining ground
over Swing because of its hardware-accelerated graphical engine called
Prism that did a better job at rendering .

 Starting with Java 7, the OpenJDK was born, an open-source
reference implementation of the Java SE Platform Edition. This was
an effort from the Java developers' community to provide a version
of the JDK that was not under an Oracle license, because it was
assumed that Oracle will introduce stricter licensing for the JDK in
order to make pro�it from it.

Java 8
Java SE 8, codename Spider , was released in 2014, and included
features that were initially intended to be part of Java 7. Better late than
never, right? Three years in the making, Java 8 contained the following
key features:

Language syntax changes

– Language-level support for lambda expressions (functional
programming features)

– Support for default methods in interfaces (covered in Chapter 4)
– New date and time API (covered in Chapter 5)
– New way to do parallel processing by using streams (covered in

Chapter 8)

Improved integration with JavaScript (the Nashorn project).
JavaScript is a web scripting language that is quite loved in the
development community, so providing support for it in Java probably
won Oracle a few new supporters.
Improvements of the garbage collection process

Starting with Java 8, codenames were dropped to avoid any
trademark-law hassles; instead, a semantic versioning that easily
distinguishes major, minor, and security-update releases was
adopted.10 The version number matches the following pattern:
$MAJOR.$MINOR.$SECURITY.

When executing java -version in a terminal (if you have Java 8
installed), you see a log similar to the one in Listing 1-3.

$ java -version

java version "1.8.0_162"

JavaTM SE Runtime Environment build 1.8.0_162-b12

Java HotSpotTM 64-Bit Server VM build 25.162-b12,

mixed mode

Listing 1-3 Java 8 Log for Execution of java -version

In this log, the version numbers have the following meaning:

The 1 represents the major version number, incremented for a major
release that contains signi�icant new features as speci�ied in a new
edition of the Java SE Platform Speci�ication.
The 8 represents the minor version number, incremented for a minor
update release that may contain compatible bug �ixes, revisions to
standard APIs, and other small features.
The 0 represents the security level that is incremented for a security-
update release that contains critical �ixes, including those necessary
to improve security. $SECURITY is not reset to zero when $MINOR is
incremented, which lets the users know that this version is a more
secure one.
162 is the build number.
b12 represents additional build information.

This versioning style is quite common for Java applications, so this
versioning style was adopted to align with the general industry
practices .

Java 9
Java SE 9 was released in September 2017. The long-awaited Jigsaw
project was �inally here. The Java platform was �inally modular.

 This is a big change for the Java world; it’s not a change in
syntax and it’s not some new feature. It’s a change in the design of
the platform. Some experienced developers I know who have used
Java since its �irst years have had dif�iculties adapting. It is supposed
to �ix some serious problems that Java has been living with for years
(covered in Chapter 3). You are lucky because as a beginner, you
start from scratch, so you do not need to change the way you develop
your applications.

The following are the most important features, aside from the
introduction of Java modules:

The Java Shell tool, an interactive command-line interface for
evaluation declarations, statements, and expressions written in Java
(covered in Chapter 3)
Quite a few security updates
private methods are now supported in interfaces (covered in
Chapter 4)
Improved try-with-resources: �inal variables can now be used
as resources (covered in Chapter 5)
“_” is removed from the set of legal identi�ier names (covered in
Chapter 4)
Enhancements for the Garbage-First (G1) garbage collector; this
becomes the default garbage collector (covered in Chapter 13)
Internally, a new more compact String representation is used
(covered in Chapter 5)
Concurrency updates (related to parallel execution, mentioned in
Chapter 5)
Factory methods for collections (covered in Chapter 5)
Updates of the image processing API optimization of components
used to write code that processes images

Java 9 followed the same versioning scheme as Java 8, with a small
change. The Java version number contained in the name of the JDK
�inally became the $MAJOR number in the version scheme. So if you
have Java 9 installed, when executing java -version in a terminal,
you see something similar to the log in Listing 1-4.

$ java -version

java version "9.0.4"

JavaTM SE Runtime Environment build 9.0.4+11

Java HotSpotTM 64-Bit Server VM build 9.0.4+11,

mixed mode

Listing 1-4 Java 9 Log for Execution of java -version

Java 10

Java SE 10 (AKA Java 18.3) was released on March 20, 2018. Oracle
changed the Java release style so that a new version is released every
six months. Java 10 also uses the new versioning convention set up by
Oracle: the version numbers follow a $YEAR.$MONTH format.11 This
release versioning style is supposed to make it easier for developers
and end users to �igure out the age of a release, so that they can judge
whether to upgrade it to a newer release with the latest security �ixes
and additional features.

The following are a few features of Java 10.12

A local-variable type inference to enhance the language to extend
type inference to local variables (this is the most expected feature
and is covered in Chapter 5)
More optimizations for garbage collection (covered in Chapter 13)
Application Class-Data Sharing to reduce the footprint by sharing
common class metadata across processes (this is an advanced feature
and it won’t be covered in the book)
More concurrency updates (related to parallel execution, mentioned
in Chapter 5)
Heap allocation on alternative memory devices (The memory needed
by JVM to run a Java program—called heap memory—can be
allocated on an alternative memory device, so the heap can also be
split between volatile and nonvolatile RAM. More about memory
used by Java applications can be read in Chapter 5.)

When JDK 10 is installed, running java -version in a terminal shows
a log that is similar to the one in Listing 1-5 .

$ java -version

java version "10" 2018-03-20

JavaTM SE Runtime Environment 18.3 build 10+46

Java HotSpotTM 64-Bit Server VM 18.3 build 10+46,

mixed mode

Listing 1-5 Java 10 Log for Execution of java -version

Java 11
Java SE 11 (AKA Java 18.9),13 released on September 25, 2018, contains
the following features:

Removal of JEE advanced components used to build enterprise Java
applications and Corba (very old technology for remote invocation,
allowing your application to communicate with applications installed
on a different computer) modules.
Local-variable syntax for lambda parameters allow the var keyword
to be used when declaring the formal parameters of implicitly typed
lambda expressions.
Epsilon, a low-overhead garbage collector (a no-GC, so basically you
can run an application without a GC), basically more optimizations to
the garbage collection (covered in Chapter 13).
More concurrency updates (related to parallel execution, mentioned
in Chapter 5).
The Nashorn JavaScript script engine and APIs are marked as
deprecated with the intent to remove them in a future release.
ECMAScript language constructs evolve pretty rapidly, so Nashorn
was getting dif�icult to maintain.

Aside from these changes, it was also speculated that a new
versioning change should be introduced because the $YEAR.$MONTH
format did not go so well with developers. (Why so many versioning
naming changes? Is this really so important? Apparently, it is.) The
proposed versioning change is similar to the one introduced in Java 9.14

When JDK 11 is installed, running java -version in a terminal shows
a log that is similar to the one in Listing 1-6 .

$ java -version

java version "11.0.3" 2019-04-16 LTS

Java(TM) SE Runtime Environment 18.9 (build

11.0.3+12-LTS)

Java HotSpot(TM) 64-Bit Server VM 18.9 (build

11.0.3+12-LTS, mixed mode)

Listing 1-6 Java 11 Log for Execution of java -version

JDK 11 is a long-term support release with several years of support
planned. This is what the LTS in the version name means.

Concomitant with the release of JDK 11, Oracle announced that they
would start charging for Java SE 8 licenses, so small businesses that try

to reduce their software costs started looking for alternatives.
AdoptOpenJDK provides prebuilt OpenJDK binaries from a fully open-
source set of build scripts and infrastructure, for multiple platforms.

OpenJDK has the same code as OracleJDK, depending on what
provider you’re using.

Another advantage is that while the Oracle, JDK cannot be modi�ied
to suit the needs of a business application; OpenJDK can be modi�ied
because is licensed under GNU General Public License, which is quite
permissive.

Also, if money is not an issue Amazon’s Coretto, Azul Zulu, and
GraalVM are all alternate JDKs optimized in one way or another.

Java 12
Java SE 12,15 released on March 29, 2019, contains the following
important features:

A new experimental Garbage Collector (GC) algorithm named
Shenandoah that reduces GC pause times.
Modi�ied syntax for the switch statement, allowing it to be used as
an expression as well. It also removes the need for break statements
(covered in Chapter 7).
JVM Constants API, to model nominal descriptions of key class-�ile
and run-time artifacts. This API can be helpful for tools that
manipulate classes and methods.
Minor improvements to the G1 garbage collector (covered in Chapter
13).
CDS archives to improve the JDK build process.
Approximately 100 microbenchmarks16 are added to the JDK source.

When JDK 12 is installed, running java -version in a terminal shows
a log that is similar to the one in Listing 1-7.

$ java -version

java version "12.0.2" 2019-07-16

Java(TM) SE Runtime Environment (build 12.0.2+10)

Java HotSpot(TM) 64-Bit Server VM (build

12.0.2+10, mixed mode, sharing)

Listing 1-7 Java 12 Log for Execution of java -version

JDK 12 is part of Oracle’s six-month release cadence introduced
with JDK 9 in September 2017. JDK 12 is a feature release with a short
support lifespan. Two patches have been already released for this
version.

Java 13
Java SE 13,17 released on September 17, 2019, contains a few important
features, hundreds of smaller enhancements, and thousands of bug
�ixes. The most important features of this version are:

Dynamic CSD archives (an improvement of the CDS archive support
added in JDK 12)
Z Garbage Collector enhancements (covered in Chapter 13)
A new implementation of the Legacy Socket API
More improvements for the switch expressions (covered in
Chapter 7)
Support for text blocks (covered in Chapter 5)

When JDK 13 is installed, running java -version in a terminal shows
a log that is similar to the one in Listing 1-8.

$ java -version

java version "13.0.2" 2020-01-14

Java(TM) SE Runtime Environment (build 13.0.2+8)

Java HotSpot(TM) 64-Bit Server VM (build 13.0.2+8,

mixed mode, sharing)

Listing 1-8 Java 13 Log for Execution of java -version

JDK 13 is a feature release with a short support lifespan as well.
Two patches have been already released for this version.

Java 14
Java SE 14,18 released on March 17, 2020, contains a big list of
important features, enhancements, and bug �ixes. The most important
features of this version are:

Pattern matching for the instanceof operator (covered in Chapter
7)

JFR Event Streaming API for collecting pro�iling and diagnostic data
about a Java application and the JVM as they’re running
More enhancements of the G1 garbage collector (covered in Chapter
13)
The CMS (Concurrent Mark Sweep) garbage collector was removed.
Support for the Z Garbage Collector for macOS (covered in Chapter
13)
Records were introduced to provide a compact syntax for declaring
classes that are transparent holders for shallowly immutable data
(covered in Chapter 5)
Foreign Memory Access API provides support for Java programs to
safely and ef�iciently access foreign memory outside of the Java heap
Improvements of the NullPointerException class to provide
more precise details to easily identify the variable being null
The jpackage tool was introduced to provides support for native
packaging formats to give end users a natural installation experience

When JDK 14 is installed, running java -version in a terminal shows
a log that is similar to the one in Listing 1-9.

$ java -version

java version "14.0.2" 2020-07-14

Java(TM) SE Runtime Environment (build 14.0.2+12-

46)

Java HotSpot(TM) 64-Bit Server VM (build

14.0.2+12-46, mixed mode, sharing)

Listing 1-9 Java 14 Log for Execution of java -version

Even if this release contains a lot of new features, most of them are
available only in preview mode or are considered being in the
incubation phase, making this release unstable and not a candidate
for long-term support.

Java 15
Java SE 15,19 released on September 15, 2020, contains considerable
improvements to projects added in previous versions. The most notable
features of this version are:

Removal of the Nashorn JavaScript Engine
Addition of sealed and hidden classes (covered in Chapter 4)
The Edwards-Curve Digital Signature Algorithm (EdDSA) is now
supported for cryptographic signatures
More enhancements for the Legacy DatagramSocket API
Biased Locking was disabled and deprecated, which leads to
performance increase for multithreaded applications

When JDK 15 is installed, running java -version in a terminal shows
a log that is similar to the one in Listing 1-10.

$ java -version

java version "15" 2020-09-15

Java(TM) SE Runtime Environment (build 15+36-1562)

Java HotSpot(TM) 64-Bit Server VM (build 15+36-

1562, mixed mode, sharing)

Listing 1-10 Java 15 Log for Execution of java -version

JDK 15 is just a short-term release that was supported with Oracle
Premier Support for six months until JDK 16 arrived in March 2021.

Java 16
Java SE 16,20 released on March 16, 2021, is the reference
implementation of the version of standard Java set to follow JDK 15.
This means that everything unstable in JDK 15 is expected to be more
stable in JDK 16. Aside from that, the most notable features of this
version are:

Introduction of a Vector API, to express vector computations that
compile to optimal vector hardware instructions on supported CPU
architectures, to achieve superior performance to equivalent scalar
computations
Strong encapsulation of JDK internals by default (covered in Chapter
3)
Foreign linker API is introduced to provide statically typed, pure-Java
access to native code
Introduction of an Elastic Metaspace which promotes return of
unused HotSpot class-metadata (i.e., metaspace) memory to the

operating system more promptly
Added support for C++ 14 language features

When JDK 16 is installed, running java -version in a terminal
shows a log that is similar to the one in Listing 1-11.

$ java -version

openjdk version "16-ea" 2021-03-16

OpenJDK Runtime Environment (build 16-ea+30-2130)

OpenJDK 64-Bit Server VM (build 16-ea+30-2130,

mixed mode, sharing)

Listing 1-11 Java 16 Log for Execution of java -version

JDK 16 is just a short-term release that was supported with Oracle
Premier Support for six months until JDK 17 arrived in September
2021. At the time this chapter was being written, JDK 16 was available
only via the early access program, which is why the “ea” string is
present in the version name.

Java 17
JDK 17,21 the next long-term support release, will be supported by
Oracle for eight years. It was released on September 14, 2021, as per
Oracle’s six-month release cadence for Java SE versions.

When this chapter was being written, JDK 17 was available only via
the early access program, which is why the “ea” string is present in the
version name; it means early access. It is quite dif�icult to use, as it is
not supported by any editors or other build tools yet. The list of
features is also incomplete and proposals for bug �ixes and features are
still welcome from the Java community.

By the time this book is released, Java 17 will be stable and ready to
use. The book will fully cover all the important stable features of this
release. Preview features are not included because they represent a risk
for the stability of this project.

Performance and implementation improvements for the Vector API
introduced in JDK 16
Re�inements for sealed classes and interfaces

Introducing Pattern Matching for switch expressions (feature
preview)
macOS speci�ic improvements
Enhancements for Pseudo-Random Number Generators: introduction
of new interface and implementations for pseudorandom number
generators (PRNGs), which including jumpable PRNGs and a new
class of splittable PRNG algorithms (LXM)
Enhancements on encapsulating JDK internals
Deprecate the Applet API (prepare for removal in JDK 18)
Deprecate the Security Manager (prepare for removal in JDK 18)
Foreign Function & Memory API merges two previously incubating
APIs the Foreign-Memory Access API and the Foreign Linker API, to
allow developers to call up native libraries and process native data
without the risks of JNI

The list of features for JDK 17 are focused on the JVM internals to
improve performance and deprecate/discard old APIs.

When JDK 17 is installed, running java -version in a terminal shows
a log that is similar to the one in Listing 1-12 .

openjdk version "17" 2021-09-14

OpenJDK Runtime Environment (build 17+35-2724)

OpenJDK 64-Bit Server VM (build 17+35-2724, mixed

mode, sharing)

Listing 1-12 Java 17 Log for Execution of java -version

This is where the details end. If you want more information on the
�irst 25 years, you can easily �ind it on the Internet.22

Prerequisites
Before ending this chapter, it is only fair to tell you that to learn Java,
you need a few things:

Know your way around an operating system, such as Windows,
Linux, or macOS.
How to re�ine your search criteria, because information related to
your operating systems is not covered in the book; if you have issues,

you must �ix them yourself.
An Internet connection.

If you already know Java, and you bought this book out of curiosity
or for the modules chapter, knowing about a build tool like Maven or
Gradle is helpful, because the source code is organized in a
multimodule project that can be fully built with one simple command.
I’ve chosen to use a build tool because in this day and age, learning Java
without one makes no sense; any company you apply to most de�initely
uses one.

Aside from the prerequisites that I listed, you also need install a JDK
and a Java Editor. This is covered in Chapter 2. You do not need to
know math, algorithms, or design patterns (though you might end up
knowing a few after you read this book).

This being said, let’s dig in.

Summary
Java has dominated the industry for more than 25 years. It wasn’t
always at the top of the most-used development technologies, but it has
never left the top �ive either. Even with server-side JavaScript smart
frameworks like Node.js, the heavy-lifting is still left to Java. Emerging
programming languages like Scala and Kotlin run on the JVM, so maybe
the Java programming language will suffer a serious metamorphosis in
order to compete, but it will still be here.

The modularization capability introduced in version 9 opens the
gates for Java applications to be installed on smaller devices, because to
run a Java application, we no longer need the whole runtime—only its
core plus the modules the application was built with.

Also, there are a lot of applications written in Java, especially in the
�inancial domain, so Java will still be here because of legacy reasons and
because migrating these titan applications to another technology is an
impossible mission. Most of these applications are stuck on JDK 8,
however, because they are complex and have a lot of dependencies that
require upgrading too, which is not always possible.

Java will probably survive and be on top for the next 10 to 15 years.
It does help that it is a very mature technology with a huge community
built around it. Being very easy to learn and developer-friendly makes

1

2

3

4

5

6

7

8

it remain the �irst choice for most companies. So you might conclude at
this point that learning Java and buying this book is a good investment.

This chapter has a lot of references. They are an interesting read,
but they are not mandatory to understand the contents of this book.
The same goes for the rest of the chapters.

Footnotes
Reference: https://en.wikipedia.org/wiki/Java_(software_platform).

Early Access Program

The story behind the logo can be read at “Title,”

https://goodlogo.com/extended.info/sunmicrosystems-logo-2385, accessed
October 15, 2021. You can also read more about Sun Microsystems.

The language was named by James Gosling, after the oak tree in front of his house.

Just In Time

All codenames, for intermediary releases too, are listed at Oracle, “JDK Releases,”

http://www.oracle.com/technetwork/java/javase/codenames-136090.html,
accessed October 15, 2021.

If you want to see the contents and the list of Java Speci�ication Requests, see Java

Community Process, http://www.jcp.org/en/jsr/detail?id=59, accessed October
15, 2021.

The Java language was �irst named Oak. It was renamed to Java because of copyright issues.

There are a few theories that you will �ind regarding the new name. There is one saying that the
JAVA name is actually a collection of the initials of the names being part of the Green team:
James Gosling, Arthur Van Hoff, and Andy Bechtolsheim, and that the logo is inspired by their
love of coffee.

https://en.wikipedia.org/wiki/Java_%2528software_platform%2529
http://www.oracle.com/technetwork/java/javase/codenames-136090.html
http://www.jcp.org/en/jsr/detail%253Fid%253D59

9

10

11

12

13

14

15

16

17

Let’s call them what they actually are: hot�ixes.

Open JDK, “JEP 223: New Version-String Scheme,”

http://openjdk.java.net/jeps/223, accessed October 15, 2021.

Conventions described by Open JDK, “JEP 322: Time-Based Release Versioning,”

http://openjdk.java.net/jeps/322, accessed October 15, 2021.

The complete list can be found at Open JDK, “JDK 10,”

http://openjdk.java.net/projects/jdk/10, accessed October 15, 2021, and the
release notes containing the detailed list with API and internal changes can be found at Oracle,
“JDK 10 Release Notes,”
https://www.oracle.com/java/technologies/javase/10-relnote-

issues.html, accessed October 15, 2021.

The full list of features is at Open JDK, “JDK 11,”

http://openjdk.java.net/projects/jdk/11/, accessed October 15, 2021.

If you are curious, you can read a detailed speci�ication for it at Open JDK, “Time-Based

Release Versioning.”

The full list of features is at Open JDK, “JDK 12,”

http://openjdk.java.net/projects/jdk/12/, accessed October 15, 2021.

Based on Java Microbenchmark Harness, Open JDK, “Code Tools: jmh,”

https://openjdk.java.net/projects/code-tools/jmh/, accessed October 15,
2021.

The full list of features is at Open JDK, “JDK 13,”

http://openjdk.java.net/projects/jdk/13/, accessed October 15, 2021.

http://openjdk.java.net/jeps/223
http://openjdk.java.net/jeps/322
http://openjdk.java.net/projects/jdk/10
https://www.oracle.com/java/technologies/javase/10-relnote-issues.html
http://openjdk.java.net/projects/jdk/11/
http://openjdk.java.net/projects/jdk/12/
https://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/jdk/13/

18

19

20

21

22

The full list of features is at Open JDK, “JDK 14,” http:// openjdk. java. net/ projects/ jdk/ 14/ ,

accessed October 15, 2021.

The full list of features is at Open JDK, “JDK 15,”

http://openjdk.java.net/projects/jdk/15/, accessed October 15, 2021.

The full list of features is at Open JDK, “JDK 16,”

http://openjdk.java.net/projects/jdk/16/, accessed October 15, 2021.

The full list of features is at JDK. java. net, “JDK 17 General-Availability Release,”

https://jdk.java.net/17, accessed October 15, 2021.

You can start your reading here, if you consider it necessary: Free Java Guide, “History of

Java Programming Language,” https://www.freejavaguide.com/history.html,
accessed October 15, 2021.

http://openjdk.java.net/projects/jdk/14/
http://openjdk.java.net/projects/jdk/15/
http://openjdk.java.net/projects/jdk/16/
http://jdk.java.net/
https://jdk.java.net/17
https://www.freejavaguide.com/history.html

(1)

© Iuliana Cosmina 2022
I. Cosmina, Java 17 for Absolute Beginners
https://doi.org/10.1007/978-1-4842-7080-6_2

2. Preparing Your Development Environment

Iuliana Cosmina1

Edinburgh, UK

To start learning Java, your computer needs to be set up as a Java development machine.
Thus, here are the requirements:

Java support on your computer is kinda mandatory.
An integrated development environment, also known as an IDE, which is basically an
application in which you write your code. An IDE assists you when writing code,
compiling it and executing it.

– The recommended IDE for this book is IntelliJ IDEA. You can go to their website to
get the free community edition; for the purposes of the book, it will do.

– Or you can choose the most popular free IDE for Java development: Eclipse.
– Or you can try NetBeans,1 which is the default choice for most beginners because it

was bundled with the JDK until version 8. It was taken out of the JDK in Java 9 and
can now be downloaded from here: https://netbeans.org/.

Maven is a build tool used to organize projects, easily handle dependencies, and make
your work easier in big multimodule projects. (It is mandatory because the projects in
this book are organized and built with a Maven setup.)
Git is a versioning system that you can use to get the sources for the book, and you can
experiment with it and create your own version. It is optional because GitHub, which is
where the sources for this chapter are hosted, supports downloading them directly as
an archive.1

To write and execute Java programs/applications, you only need the Java
Development Kit (JDK) installed. Nothing stops you writing Java code in Notepad, if that is
what you want. All other tools that I’ve listed here are only needed to make your job
easier and to familiarize you with a real development job.

 You probably need administrative rights if you install these applications for all
users. For Windows 10, you might even need a special program to give your user
administrative rights so that you can install the necessary tools. This book provides
instructions on how to install everything—assuming your user has the necessary
rights. If you need more information, the Internet is here to help.

https://doi.org/10.1007/978-1-4842-7080-6_2
https://netbeans.org/

If it seems like a lot, do not get discouraged; this chapter contains instructions on how
to install and verify that each of tool is working accordingly. Let’s start by making sure
your computer supports Java.

Installing Java
Here you are with your computer, and you can’t wait to start writing Java applications.
But �irst you need to get yourself a JDK and install it. For this, you need an Internet
connection. Open your browser and go to https://developer.oracle.com/java.
The menu should have a Downloads section. Expand it and select Java SE, as shown in
Figure 2-1.

Figure 2-1 Navigating the Oracle site to �ind the desired JDK

On the Oracle site, you will �ind the latest stable Java version. Click on the Download
link under the desired version. You should be redirected to a download page similar to
the one in Figure 2-2.

https://developer.oracle.com/java

Figure 2-2 The Oracle page where you can download the desired JDK

JDK is available for a few operating systems. You should download the one matching
yours. For writing this book and writing the source code I am using a macOS computer,
which means I will download the JDK with the *.dmg extension.

You need to accept the license agreement of you want to use Java for development.
You can read it if you are curious, but basically it tells you that you are allowed to use Java
as long as you do not modify its original components. It also tells you that you are
responsible for how you use it, so if you use it to write or execute nefarious applications
you are solely responsible in terms of the law and so on.

If you want to get your hands on an early version of JDK that was not of�icially
released yet, this is the page where you have to go:
http://openjdk.java.net/projects/jdk/. At the time this chapter was being
written, on that page, under Releases, versions 16 and 17 are listed as in development,
and an early access (unstable) JDK 17 is available for download.

 This book will cover Java syntax and details for versions up to and including 17.
That version is eight months away when this chapter is being written, thus some
images and details might seem outdated (e.g. Oracle might change the theme of their
site). There are common details that remain the same from a version to another. There
is quite a small chance the JDK will no longer be called a JDK. Those won’t be reviewed
and changed, as the only thing that is different is the version number. As the book is
planned to be released after Java 17 is released, it is recommended to download that
version of the JDK to have full compatibility of the sources ensured.

After you have downloaded the JDK, the next step is to install it. Just double-click it
and click Next until �inish. This will work for Windows and macOS. The JDK is installed in

http://openjdk.java.net/projects/jdk/

a speci�ic location.
In Windows, this is C:\Program Files\Java\jdk-17.
In macOS this is /Library/Java/JavaVirtualMachines/jdk-

17.jdk/Contents/Home.
On Linux systems, depending on the distribution, the location where the JDK is

installed varies. My preferred way is to get the *.tar.gz from the Oracle site that contains
the full content of the JDK, unpack it, and copy it to a speci�ic location. Also, my preferred
location on Linux is /home/iuliana.cosmina/tools/jdk-17.jdk.

Using a PPA (repository; also known as a package manager) installer on Linux will put
the JDK �iles where they are supposed to go on Linux automatically and update them
automatically when a new version is released using the Linux (Global) updater utility. But
if you are using Linux pro�iciently, you’ve probably �igured out you can skip this section
by now.

Another way to make things easy on a Linux or Unix system, is to use SDKMAN. Get it
from here: https://sdkman.io/.

If you go to that location, you can inspect the contents of the JDK. In Figure 2-3, on the
left are the contents of JDK 17, and on the right are the contents of the JDK 8.

Figure 2-3 JDK version 8 and 17 contents comparison

I chose to make this comparison because starting with Java 9, the content of the JDK is
organized differently. Until Java 8, the JDK contained a directory called jre that
contained a Java Runtime Environment (JRE) used by the JDK. For people interested only
in running Java applications, the JRE could be downloaded separately.

The lib directory contains Java libraries and support �iles needed by development
tools.

Starting with Java 9, the JRE is no longer isolated in its own directory. Starting with
version 11, Java has become fully modular. This means a customized JRE distribution can
be created with speci�ically the modules needed to run an application. This means there
are no JREs to download on the Oracle site starting with Java 11.

The most important thing you need to know about the JDK is that the bin directory
contains executables and command-line launchers that are necessary to compile, execute,
and audit Java code. The other directories are the jmods directory, which contains the

https://sdkman.io/

compiled module de�initions, and the include directory, which contains the C-language
header �iles that support native code programming with the Java Native Interface (JNI)
and the Java Virtual Machine (JVM) Debug Interface .

The JAVA_HOME Environment Variable
The most important directory in the JDK is the bin directory, because that directory has
to be added to the path of your system. This allows you to call the Java executables from
anywhere. This allows other applications to call them as well, without extra
con�igurations steps needed. Most IDEs used for handling2 Java code are written in Java,
and they require knowing where the JDK is installed so that they can be run. This is done
by declaring an environment variable named JAVA_HOME that points to the location of
the JDK directory. To make the Java executables callable from any location within a
system, you must add the bin directory to the system path. The next three sections
explain how to do this on the three most common operating systems.

JAVA_HOME on Windows
To declare the JAVA_HOME environment variable on a Windows system, you need to open
the dialog window for setting up system variables. On Windows systems, click the Start
button. In the menu, there is a search box. In more recent versions, there is a search box
on the horizontal toolbar; you can use this one too. Enter the word environment in there
(the �irst three letters of the word should suf�ice). The option should become available for
clicking. These steps, on Windows 10, are depicted in Figure 2-4.

Figure 2-4 Windows menu item to con�igure environment variables

After clicking that menu item, a window like the one shown in Figure 2-5 should open.

Figure 2-5 First dialog window to set environment variables on Windows

Click the Environment Variables button (the one with the hard edges). Another
dialog window opens, which is split into two sections: user variables and system
variables. You are interested in System variables because that is where we declare
JAVA_HOME. Just click the New button, and a small dialog window appears with two text
�ields; one requires you to enter the variable name—JAVA_HOME, in this case, and one
requires you to enter the path—the JDK path in this case. The second window and the
variable information pop-up dialog window are depicted in Figure 2-6.

Figure 2-6 Declaring JAVA_HOME as a system variable on Windows 10

After de�ining the JAVA_HOME variable, you need to add the executables to the
system path. This can be done by editing the Path variable . Just select it from the System
Variables list and click the Edit button. Starting in Windows 10, each part of the Path
variable is shown on a different line, so you can add a new line and add
%JAVA_HOME%\bin on it. This syntax is practical because it takes the location of the bin
directory from whatever location the JAVA_HOME variable contains. The dialog window
is depicted in Figure 2-7.

Figure 2-7 Declaring the JDK executables directory as part of the system Path variable on Windows 10

On older Windows systems, the contents of the Path are shown in a text �ield. This
means that you must add the %JAVA_HOME%\bin expression in the Variable text �ield
and separate it from the existing content by using a semicolon (;).

No matter which Windows system you have, you can check that you set everything
correctly by opening Command Prompt and executing the set command. This lists all
the system variables and their values. JAVA_HOME and Path should be there with the
desired values. For the setup proposed in this section when executing the set the output
is depicted in Figure 2-8.

Figure 2-8 Windows 10 system variables listed with the ‘set’ command

If you execute the previous command and see the expected output, you can now test
your Java installation by executing java -version in the Command Prompt window,
which prints the expected result, similar to the contents of Listing 2-1.

$ java -version

openjdk version "17-ea" 2021-09-14

OpenJDK Runtime Environment (build 17-ea+3-125)

OpenJDK 64-Bit Server VM (build 17-ea+3-125, mixed mode,

sharing)

Listing 2-1 Java 17 Log for Execution of java -version

JAVA_HOME on macOS
The location in which JDK is installed is
/Library/Java/JavaVirtualMachines/jdk-17.jdk/Contents/Home. Your
JAVA_HOME should point to this location. To do this for the current user, you can do
the following:

In the /Users/{your.user} directory,3 create a �ile named .bash_profile, if it
doesn’t exist already.
In this �ile, write the following:

export JAVA_HOME=$(/usr/libexec/java_home -v17)

export PATH=$JAVA_HOME/bin:$PATH

If you use a different shell, just add the same two lines in its own con�iguration �ile.
On macOS, you can simultaneously install multiple Java versions. You can set which

version is the one currently used on the system by obtaining the JDK location for the
desired version by calling the /usr/libexec/java_home command and giving the
Java version you are interested in as the argument. The result of executing the command
is stored as a value for the JAVA_HOME variable.

On my system, I have JDK 8 to 17 installed. I can check the location for each JDK by
executing /usr/libexec/java_home command and providing each version as an
argument. The commands and outputs for versions 8 and 17 are depicted in Listing 2-2.

$ /usr/libexec/java_home -v17

/Library/Java/JavaVirtualMachines/jdk-17.jdk/Contents/Home

$ /usr/libexec/java_home -v1.8

/Library/Java/JavaVirtualMachines/jdk1.8.0_162.jdk/Contents/Home

Listing 2-2 Java 8 and 17 Locations Obtaind By Calling /usr/libexec/java_home

 Manually installing Java and declaring the JAVA_HOME environment variable can
be avoided by using SDKMAN.

The line export PATH=$JAVA_HOME/bin:$PATH adds the contents of the bin
directory from the JDK location to the system patch. This means that I could open a
terminal and execute any of the Java executables under it. For example, I could verify that
the Java version set as default for my user is the expected one by executing java –
version.

Depending on the version given as argument, a different JDK location is returned. If
you want to test the value of the JAVA_HOME, the echo command can help with that.
Listing 2-3 depicts the outputs of the echo and java –version commands.

$ echo $JAVA_HOME

/Library/Java/JavaVirtualMachines/jdk-17.jdk/Contents/Home

$ java -version

openjdk version "17-ea" 2021-09-14

OpenJDK Runtime Environment (build 17-ea+3-125)

OpenJDK 64-Bit Server VM (build 17-ea+3-125, mixed mode,

sharing)

Listing 2-3 echo and java –version commands to check JAVA_HOME value and the Java version installed

JAVA_HOME on Linux

 If you are using Linux pro�iciently, you are either using a PPA or SDKMAN , so you
can skip this section. However, if you like to control where the JDK is and de�ine your
own environment variables, keep reading.

Linux systems are Unix-like operating systems. This is similar to macOS, which is
based on Unix. Depending on your Linux distribution, installing Java can be done via the
speci�ic package manager or by directly downloading the JDK as a *.tar.gz archive from
the of�icial Oracle site.

If Java is installed using a package manager, the necessary executables are usually
automatically placed in the system path at installation time. That is why in this book we
cover only the cases where you do everything manually, and choose to install Java only for
the current user in a location such as /home/{your.user}/tools/jdk-17.jdk,
because covering package managers is not the object of the book.4

After downloading the JDK archive from the Oracle site and unpacking it at
/home/{your.user}/tools/jdk-17.jdk, you need to create a �ile named either
.bashrc or .bash_profile in your user home directory. On some Linux distributions
the �iles might already exist, and you just need to edit them. Add the following to lines:

 export JAVA_HOME=/home/{your.user}/tools/jdk-17.jdk

 export PATH=$JAVA_HOME/bin:$PATH

As you can see, the syntax is similar to macOS. To check the location of the JDK and the
Java version, the same commands mentioned in the macOS section are used.

Installing Maven

 The sources for the �irst edition of this book were organized in a Gradle
multimodule project. As per readers’ request, the sources for this book are organized
in a Maven multimodule project.

The sources attached to this book are organized in small projects that can be
compiled and executed using the Apache Maven. You can download it and read more
about it on its of�icial page: https://maven.apache.org. Apache Maven is a
software project management and comprehension tool. It was chosen as a build tool for
this book because of the easy setup (XML is pretty much omnipresent nowadays) and
because of its long-term relationship with Java. It is practical to learn a build tool, because
for medium-sized and large projects they are a must-have since they facilitate the
declaration, download, and upgrade of dependencies.

Installing Maven is quite easy. Just download it, unpack it somewhere, and declare the
M2_HOME environment variable. Instructions on how to do this are part of the of�icial
site, or you can use SDKMAN.

Once you have Maven installed you can check to see that it is installed successfully,
and that it uses the JDK version you expect, by opening a terminal (or Command Prompt
on Windows) and executing mvn -version. The output should look pretty similar to
the one in Listing 2-4.

$ mvn --version

Apache Maven 3.6.3 (cecedd343002696d0abb50b32b541b8a6ba2883f)

Maven home:

/Users/iulianacosmina/.sdkman/candidates/maven/current

Java version: 17-ea, vendor: Oracle Corporation, runtime:

/Library/Java/JavaVirtualMachines/jdk-17.jdk/Contents/Home

https://maven.apache.org/

Default locale: en_GB, platform encoding: UTF-8

OS name: "mac os x", version: "10.16", arch: "x86_64", family:

"mac"

Listing 2-4 Output of Command mvn -version on macOS

 If you are pursuing a career in Java development, knowing a build tool well is a
valuable advantage. Most companies using Java have big projects, organized in
interdependent modules that cannot be managed without a build tool. Apache Maven
has been the de facto build tool for Java for a long time, so you might want to get
familiar with it.

Installing Git
This is an optional section , but as a developer, being familiar with a versioning system is
important, so here it is. To install Git on your system, just go to the of�icial page at
https://git-scm.com/downloads and download the installer. Open the installer
and click Next until done. This works for Windows and macOS.5 Yes, it is this easy; you do
not need to do anything else. On Linux, it can be done using a PPA.

Just in case you need it, here is a page with instructions on how to install Git for all
operating systems:
https://gist.github.com/derhuerst/1b15ff4652a867391f03

To test that Git installed successfully on your system, open a terminal (Command
Prompt in Windows, and any type of terminal you have installed on macOS and Linux)
and run git --version to see the result that it is printed. It should be the version of
Git that you just installed. The expected output should be similar to Listing 2-5.

$ git --version

git version 2.20.1

Listing 2-5 Output of Command git –version to Verify Git Installation

Now that you have Git installed, you can get the sources for this book by cloning the
of�icial Git repository in a terminal or directly from the IDE .

Installing a Java IDE
The editor that I recommend, based on my experience of more than 10 years, is IntelliJ
IDEA. It is produced by a company called JetBrains. You can download this IDE from their
of�icial site at https://www.jetbrains.com/idea/download/. The Ultimate
Edition expires after 30 days; beyond that, a paid license is required. There is also a
community edition available that can be used without a license. For simple projects that
facilitate learning Java, this version suf�ices.

After you download the IntelliJ IDEA archive, double-click it to install it. After that,
start it and con�igure your plug-ins �irst. Click the Plug-ins menu item and on the right

https://git-scm.com/downloads
https://gist.github.com/derhuerst/1b15ff4652a867391f03
https://www.jetbrains.com/idea/download

side of the window, a list of plug-ins should appear. The list of plug-ins on the Installed
tab is what you might want to check out (depicted in Figure 2-9).

Figure 2-9 IntelliJ IDEA Community Edition con�igure plug-ins window

 The plug-ins necessary for diverse styles of Java projects are enabled by default in
IntelliJ IDEA. You can modify that list and disable the ones you do not need. This will
reduce the amount of memory IntelliJ IDEA needs to function.

The Maven plug-in is enabled by default; so is the Git plug-in. This means your IDE is
suitable for use right away. This means that you need to get your hands on the sources for
this book. There are three ways to get the sources for the book:

Download the zipped package directly from GitHub.
Clone the repository using a terminal (or Git Bash Shell in Windows) using the
following command:

$ git clone https://github.com/Apress/java-17-for-absolute-

beginners.git

Clone the project using IntelliJ IDEA.

Cloning from the command line or from IntelliJ IDEA, does not require a GitHub user
when the HTTPS URL of the repository is used. Figure 2-10 shows the two steps
necessary to clone the GitHub project for this book.

Figure 2-10 IntelliJ IDEA Community Edition Clone from VCS windows

When opening IntelliJ IDEA the �irst time, select the Projects menu item, then click
the Clone from VCS button. A new dialog window appears and in it you can insert the
repository URL and the location where the sources should be copied. After clicking the
Clone button, the project will be copied, and IntelliJ IDEA will open it and �igure out it
uses Maven.

If you cloned the project using the command line, you can import it in IntelliJ IDEA
using the Open Button and selecting the directory created by the cloning operation.

 IntelliJ IDEA has its own internal Maven bundle. If you want to tell IntelliJ IDEA to
use your local installation, just open the Preferences menu item, go to Build,
Execution, Deployment ➤ Build Tools ➤ Maven section and select the external
Maven installation directory.

And this is it. Starting in the next chapter some code snippets are presented, so go
ahead and build the project. This can be done by executing the maven install phase
by double-clicking on it in the IntelliJ IDEA Maven view, as depicted in Figure 2-11.

Figure 2-11 IntelliJ IDEA Maven view

It is expected that a window be opened at the bottom of the editor depicting the build
progress, and if the sources are okay too, this process should end with the message
BUILD SUCCESS being printed.

 If the build fails in IntelliJ IDEA, and you want to identify the problem, the �irst
step is running outside the IDE. You can run the build in a terminal (or Command
Prompt on Windows) by executing mvn clean install. If the build passes in the
terminal, the sources and your setup is correct and there is a problem with the editor
con�iguration for sure.

The Maven build follows a speci�ic lifecycle to transform a Java project from sources to
something that can be executed or deployed to an application server. Phases are executed
in a speci�ic order. Running a speci�ic phase using the mvn {phase} command executes
a number of steps named goals, each responsible for a speci�ic task.

The mvn clean install command recommended previously executes a clean
phase, that deletes previously generated bytecode �iles and then an install phase that
compiles Java �iles into bytecode, executes tests , if there are any, packs them up in Java
Archives (*.jar �iles) and copies them to the local Maven repository. If you want to read
more about Maven just check out the of�icial site: https://maven.apache.org, but

https://maven.apache.org/

1

2

3

4

5

6

for the scope as this book, everything has been made really easy for you as explained in
Chapter 3.

Summary
If any of instructions are unclear to you (or I missed something), do not hesitate to use
the World Wide Web to search for answers. All the software technologies introduced in
this chapter are backed up by comprehensive of�icial websites and by huge communities
of developers eager to help. In the worst-case scenario, when you �ind nothing, you can
always create an issue on the Apress GitHub of�icial repository for this book or drop me
an email. I’ll do my best to support you if need be.

But I think you will be �ine. Java is hardly rocket science.6

Footnotes
Any respectable software company uses a versioning system these days, so being comfortable with Git is a serious

advantage when applying for a software developer position.

Includes operations like writing the code, analyzing the code, compiling it, and executing it.

Replace {your.user} with your actual system username.

Linux users do not really need this section anyway.

For macOS, you can use homebrew (https://brew.sh) as well.

It wasn’t until Java 9, but this book should make it easier for beginner developers.

https://brew.sh/

(1)

© Iuliana Cosmina 2022
I. Cosmina, Java 17 for Absolute Beginners
https://doi.org/10.1007/978-1-4842-7080-6_3

3. Getting Your Feet Wet

Iuliana Cosmina1

Edinburgh, UK

This chapter covers the fundamental building blocks and terms of the Java language. Although it could be
considered yet another introductory chapter, it is quite important. The previous chapter left you with a
complete development environment con�igured for writing Java code. It is time to make use of it. The
following topics are covered in this chapter:

Core syntax parts
Using JShell
Java fundamental building blocks: packages, modules, and classes
Creating a Java project with IntelliJ IDEA
Compiling and executing of Java code
Packing a Java application into an executable jar
Using Maven

Core Syntax Parts
Writing Java code is easy, but before doing so, a few basic syntax rules are necessary. Let’s analyze the code
sample that started this book, now depicted in Listing 3-1.

package com.apress.ch.one.hw;

import java.util.List;

public class Example01 {

 public static void main(String[] args) {

 List<String> items = List.of("1", "a", "2", "a", "3", "a");

 items.forEach(item -> {

 if (item.equals("a")) {

 System.out.println("A");

 } else {

 System.out.println("Not A");

 }

 });

 }

}

Listing 3-1 The Java Beginner Code Sample a Smart Beginner Deserves

The next list explains each line, or group of lines with the same purpose:

; (semicolon) is used to mark the end of a statement or declaration.
package com.apress.ch.one.hw; is a package declaration. You can view this statement as an
address the class declared in the �ile.
import java.util.List; is an import statement. JDK provides a number of classes to use when
writing code. Those classes are organized in packages too and when you want to use one of them, you
have to specify the class to use and its package, because two classes might have the same name but are

https://doi.org/10.1007/978-1-4842-7080-6_3

declared in different packages. And when the compiler compiles your code, it needs to know exactly which
class is needed.
public class Example01 is a class declaration statement. It contains an accessor (public), the
type (class) and the name of the class (Example01). A class has a body that is wrapped between curly
braces.
{ ... } (curly braces) are used to group statements together into code blocks. Blocks do not require to
be ended with a ;. Blocks of code can represent a body of a class, a method, or just a few statements that
have to be grouped together.
public static void main(String[] args) is a method declaration statement. It contains an
accessor (public), a reserved keyword (static) that will be explained later, the name of the method
(main), and a section that declares parameters ((String[] args)).
List<String> items = List.of("1", "a", "2", "a", "3", "a"); is a statement
declaring a variable named items of type List<String> and assigning the value returned by this
statement to it: List.of("1", "a", "2", "a", "3", "a").
items.forEach(...) is a statement containing a function call on the items variable used to traverse
all values in this list variable.
item -> { ... } is a lambda expression. It declares a code block to be executed for each item in the
list.
if (<condition>) { ... } else { ... } is a decisional statement. The block of code being
executed is decided by evaluating the condition.
System.out.println(<text>); is a statement used to print an argument passed to it.

It’s too early in the book to start explaining everything in the previous list in detail, but the most
important rule when writing Java code is that except for package declarations and import statements, all
code must be within a block. Also, if a statement is not spread on multiple lines, it must end with ";",
otherwise the code will not compile.

Before starting to write more verbose Java classes, it is good to start writing simple Java statements and
get used to the syntax. Starting with Java 9, this is possible using JShell, an interactive tool for learning the
Java programming language and prototyping Java code. So instead of writing your code in a class, compiling
it, and executing the bytecode, you can just use JShell to directly execute statements.

Using JShell
JShell is quite late to the party, as scripting languages like Python and Node introduced similar utilities years
ago, and JVM languages like Scala, Clojure, and Groovy followed in their footsteps. But better late than never.

JShell is a Read-Eval-Print Loop (REPL) , which evaluates declarations, statements, and expressions as
they are entered and then immediately shows the results. It is practical to try new ideas and techniques
quickly and without the need to have a complete development environment, nor an entire context for the
code to be executed in.

JShell is a standard component of the JDK. The executable to start is in the bin directory located in the
JDK installation directory. This means that all you have to do is open a terminal (Command Prompt in
Windows) and type jshell. If the contents of the bin directory were added to the system path, you should
see a welcome message containing the JDK version on your system. Also, the root of your terminal changes
to jshell> to let you know you are now using jshell.

In Listing 3-2, jshell was started in verbose mode, by calling jshell -v, which enables detailed
feedback to be provided for all statements executed until the end of the session.

$ jshell -v

| Welcome to JShell -- Version 17-ea

| For an introduction type: /help intro

jshell>

Listing 3-2 Output of Command jshell -v

If you are executing the commands as you are reading the book, go ahead and enter /help to view a list
of all the available actions and commands. Assuming you are not, Listing 3-3 depicts the expected output.

jshell> /help

| Type a Java language expression, statement, or declaration.

| Or type one of the following commands:

| /list [<name or id>|-all|-start]

| list the source you have typed

| /edit <name or id>

| edit a source entry

| /drop <name or id>

| delete a source entry

| /save [-all|-history|-start] <file>

| Save snippet source to a file

...

| /exit [<integer-expression-snippet>]

| exit the jshell tool

...

Listing 3-3 Output of Command /help in jshell

In Java, values are assigned to groups of characters named variables. (More about how to choose them
and use them in Chapter 4.) To begin using JShell, we’ll declare a variable named six and assign the value 6
to it (I know, smart right?). The statement and the jshell logs are depicted in Listing 3-4.

jshell> int six = 6;

six ==> 6

| created variable six : int

Listing 3-4 Declaring a Variable Using jshell

As you can see, the log message is clear and tells us that our command was executed successfully, and a
variable of type int named six was created. The six ==> 6 lets us know that value 6 was assigned to the
variable that we just created.

You can create as many variables as you want and perform mathematical operations, string
concatenations, and anything that you need to quickly execute. As long as the JShell session is not closed, the
variables exist and can be used. Listing 3-5 depicts a few statements being executed with JShell and their
results.

jshell> int six = 6

six ==> 6

| modified variable six : int

| update overwrote variable six : int

jshell> six = six + 1

six ==> 7

| assigned to six : int

jshell> six +1

$14 ==> 8

| created scratch variable $14 : int

jshell> System.out.println("Current val: " + six)

Current val: 7

Listing 3-5 jshell Various Statements and Outputs

The $14 ==> 8 depicted in the previous code listing shows the value 8 being assigned to a variable
named $14. This variable was created by jshell. When the result of a statement is not assigned to a variable
named by the developer, jshell generates a scratch variable and its name is made of the $(dollar) character
and a number representing an internal index for that variable. It is not explicitly stated in the

documentation, but from my observations while playing with jshell, the index value appears to be the
number of the statement that lead to its creation.

 One of the most important building blocks of Java code is the class. Classes are pieces of code that
model real-world objects and events. Classes contain two types of members: those modelling states,
which are the class variables, also named �ields or properties, and those modelling behaviors, named
methods.

JDK provides a lot of classes that model the base components needed to create most applications. Classes
are covered in more detail in the next chapter. Even if some concepts seem foreign now, just be patient and
let them accumulate; they will make more sense later.

One of the most important JDK class is java.lang.String, which is used to represent text objects.
This class provides a rich set of methods that manipulate the value of a String variable. Listing 3-6 depicts
a few of these methods being called on a declared variable of type String.

jshell> String lyric = "twice as much ain't twice as good"

lyric ==> "twice as much ain't twice as good"

| created variable lyric : String

jshell> lyric.toUpperCase()

$18 ==> "TWICE AS MUCH AIN'T TWICE AS GOOD"

| created scratch variable $18 : String

jshell> lyric.length()

$20 ==> 33

| created scratch variable $20 : int

Listing 3-6 jshell Method Calling Examples with String Variable

The task of writing Java code in jshell using variables of JDK types might look complicated, because
you do not know what method to call, right? jshell is quite helpful because it tells you when the method
does not exist. When trying to call a method, you can press the <Tab> key and a list of methods available is
displayed. This is called code completion and smart Java editors offer it too.

In Listing 3-7, you can see the error message printed by jshell when you try to call a method that does
not exist and how to display and �ilter methods available for a certain type.

jshell> lyric.toupper()

| Error:

| cannot find symbol

| symbol: method toupper()

| lyric.toupper()

| ^-----------^

jshell> lyric.to # <Tab>

toCharArray() toLowerCase(toString() toUpperCase(

jshell> lyric. # <Tab>

charAt(chars() codePointAt(

codePointBefore(codePointCount(codePoints()

...

Listing 3-7 More jshell Method Calling Examples with String Variable

JShell is quite obvious in telling us that the toupper() method is not known for String class.
When listing possible methods, methods ending in (require no arguments. The methods ending in a

single open parentheses take none or more arguments and have more than one form. To view those forms,
just write the method on your variable and press <Tab> again. Listing 3-8 depicts the multiple forms of the
indexOf method .

jshell> lyric.indexOf(# <Tab>

$1 $14 $18 $19 $2 $20 $5 $9 lyric six

Signatures:

int String.indexOf(int ch)

int String.indexOf(int ch, int fromIndex)

int String.indexOf(String str)

int String.indexOf(String str, int fromIndex)

<press tab again to see documentation>

Listing 3-8 jshell Listing All the Forms of the indexOf Method in the String Class

Right after the lyric.indexOf(line jshell lists the variables that were created during the session, to
give you an easy choice of existing arguments.

Anything you would write in a Java project, you can write it in jshell as well. The advantage is that you
can split your program in a sequence of statements, execute them instantly to check the result, and adjust as
necessary. There are other things that jshell can do for you and the most important are part of this book.

All variables you declared in a JShell session are listed by executing the /vars command . Listing 3-9
depicts the variables declared in the session for this chapter.

jshell> /vars

| int $1 = 5

| int $2 = 42

| int $5 = 8

| int $9 = 8

| int six = 7

| int $14 = 8

| String lyric = "twice as much ain't twice as good"

| String $18 = "TWICE AS MUCH AIN'T TWICE AS GOOD"

| int $19 = 9

| int $20 = 33

Listing 3-9 jshell> /vars Output Sample for a Small Coding Session

If you want to save all your input from a JShell session, you can do so by executing the /save
{filename}.java.

1

Assuming all statements are valid Java statements, the statements in the resulting �ile can be executed
into a new JShell session using the /open {filename}.java command.

There is a JShell complete user guide2 available on the Oracle of�icial site if you are interested in trying
every command and every feature it has to offer.

Java Fundamental Building Blocks

 This is a consistent introduction into Java as a platform. To write code con�idently, you need to have
a grasp of what happens under the hood, what the building blocks are, and the order in which you have to
con�igure/write them. If you want, you can skip the next section altogether, but in the same way some
new drivers need a little knowledge of how the engine works before grabbing the driving wheel
con�idently, some people might feel more con�ident and in control when programming if they understand
the mechanics a little. So I wanted to make sure that anyone reading this book gets a proper start.

To write Java applications, a developer must be familiar with the Java building blocks of a Java program.
Think about it like this: if you are trying to build a car, you have to learn what wheels are and where they are
placed, right? This is what I’m trying to achieve for Java in this book: to explain all the components and their
purpose.

The core of this ecosystem is the class. There are other object types 3 in Java, but classes are the most
important because they represent the templates for the objects making up an application. A class mainly
contains �ields and methods. When an object is created, the values of the �ields de�ine the state of the
object, and the methods describe its behavior.

 The Java object is a model of a real-world object. So if we choose to model a car in Java, we will
choose to de�ine �ields that describe the car: manufacturer, modelName, productionYear, color, and speed.
The methods of our car class describe what the car does. A car does mainly two things: accelerates and
brakes, so any method should describe actions related to these two things.

Packages
When you are writing Java code, you are writing code to describe state and behavior of real-world items. The
code must be organized in classes and other types that are used together to build an application. All types
are described in �iles with the .java extension. Object types are organized in packages.

A package is a logical collection of types: some of them are visible outside the package, and some of them
are not, depending on their scope.

 To understand the way packages work, imagine a box containing other boxes. Those boxes might be
�illed with other boxes, or they might be �illed with some items that are not boxes. For the sake of this
example, let’s say those items are Lego pieces. This analogy works well, because Java types can be
composed in the same way as Lego pieces are.

Package names must be unique, and their name should follow a certain template. This template is usually
de�ined by the company working on the project. Good practices say that to ensure unicity and meaning, you
typically begin the name with your organization’s Internet domain name in reverse order, then add various
grouping criteria.

In this project, package names follow the template depicted here: com.apress.bgn.[<star>]+. This
template begins with the reversed domain name for Apress publisher (www.apress.com), then a term
identifying the book is added (bgn is a shortcut for beginner) and at last, the <star> replaces the number
of the package the source (usually) matches.

Considering the previously introduced boxes and Legos analogy, the com package is the big box
containing the apress box. It could contain other Legos too, but for this example it does not.

The apress box represents the com.apress package and contains the bgn box.
The bgn represents the com.apress.bgn package box and contains boxes speci�ic to each chapter,

containing either other boxes and/or Legos. The Legos are the Java �iles, containing Java code. Figure 3-1
represents these boxes and Legos and the way they are nested.

Figure 3-1 Java packages with source code represented as nested boxes and Legos

On your computer, a package is a hierarchy of directories. Each directory contains other directories
and/or Java �iles. It all depends on your organizational skills. This organization is important, because any

http://www.apress.com/

Java object type can be identi�ied uniquely using the package name and its own name.
If we were to write a class named HelloWorld in a �ile named HelloWorld.java and put this �ile in

package com.apress.bgn.one, in a Java project the com.apress.bgn.one.HelloWorld alliteration
is the full class name that acts as an unique identi�ier for this class. You can view the package name as an
address of that class.

Starting with Java 5, inside each package a �ile named package-info.java can be created that
contains a package declaration, package annotations, package comments, and Javadoc annotations. The
comments are exported to the development documentation for that project, also known as Javadoc.
Chapter 9 covers how to generate the project Javadoc using Maven. The package-info.java must
reside under the last directory in the package. So if we de�ine a com.apress.bgn.one package, the
overall structure and contents of the Java project looks like Figure 3-2.4

Figure 3-2 Java package contents

The package-info.java contents could be similar to the contents of Listing 3-10.

/**

 * Contains classes used for reading information from various sources.

 * @author iuliana.cosmina

 * @version 1.0-SNAPSHOT

 */

package com.apress.bgn.one;

Listing 3-10 package-info.java Contents

The �iles with .java extension containing type de�initions are compiled into �iles with .class
extension that are organized according to the same package structure and packaged into one or more JARs
(Java Archives).5 For the previous example, if we were to unpack the JAR resulted after the compilation and
linkage, you would see what’s shown in Figure 3-3.

Figure 3-3 Contents of a sample JAR

The package-info.java �ile is compiled too, even if it only holds information about the package and
no behavior or types.

 package-info.java �iles are not mandatory; packages can be de�ined without them. They are
useful mostly for documentation purposes.

The contents of one package can span across multiple JARs, meaning that if you have more than one
subproject in your project you can have the same package name in more than one, containing different
classes. A symbolic representation of this is depicted in Figure 3-4.

Figure 3-4 Example of package contents that span across multiple JARs

A library is a collection of JARs6 containing classes used to implement a certain functionality. For
example, JUnit is a very famous Java framework providing multiple classes that facilitate writing Java unit
tests.

A moderately complex Java application references one or more libraries. To run the application, all its
dependencies (all the JARs) must be on the classpath. What does this mean? It means that in order to run a
Java application, a JDK, the dependencies (external JARs), and the application jars are needed. Figure 3-5
depicts this quite clearly.

Figure 3-5 Application classpath

 We are assuming here that the application is being run on the same environment where it was
written, and so the JDK is used to run the application. Until JDK 11, any Java application could be run
using the JRE. But starting with version 11, Java has become fully modular. This means that a customized
“JRE” distribution can be created only from the modules needed to run an application. Indirectly, this
means that the resulted JRE will contain a minimal number of JDK compiled classes.

The JARs that make up an application classpath are (obviously) not always independent of each other.
For 21 years this organization style was enough, but in complex applications there were a lot of
complications caused by:

packages scattered in multiple jars. (remember Figure 3-4?) This might lead to code duplication and
circular dependencies.
transitive dependencies between jars which sometimes lead to different versions of the same class being
on the classpath. This might lead to unpredictable application beahvior.
missing transitive dependencies and accessibility problems. This might lead to an application crash.

All these problems are grouped under one name: The Jar Hell.7 This problem was resolved in Java 9 by
introducing another level to organize packages: modules . Or at least that was the intention. However, the
industry has been reluctant to adopt Java modules. At the time this chapter was written, the majority of Java
production applications are still not only stuck on Java 8, but developers avoid modules like they would
avoid the plague.

However, before introducing modules, access modi�iers should be mentioned. Java types and their
members are declared with certain access rights within packages, and that is something quite important to
understand before jumping to coding.

Access Modi�iers
When declaring a type in Java—let’s stick to the class for now—because it is the only one mentioned so
far, you can con�igure its scope using access modi�iers.

Access modi�iers can be used to specify access to classes, and in this case we say that they are used at
top-level.

They can be also be used to specify access to class members, and in this case they are used at member-
level.

8

At top-level only two access modi�iers can be used: public and none.
A top-level class that is declared public must be de�ined in a Java �ile with the same name. Listing

3-11 depicts a class named Base that is de�ined in a �ile named Base.java located in package
com.apress.bgn.zero.

package com.apress.bgn.zero;

// top-level access modifier

public class Base {

 // code omitted

}

Listing 3-11 Base Class

The contents of the class are not depicted for the moment and replaced with ... to stop you from losing
focus. A public class is visible to all classes anywhere in the application. A different class in a different
package can create an object of this type, as depicted in Listing 3-12:

package com.apress.bgn.three;

import com.apress.bgn.zero.Base;

public class Main {

 public static void main(String... args) {

 // creating an object of type Base

 Base base = new Base();

 }

}

Listing 3-12 Creating an Object Using the Base Class

The line Base base = new Base(); is where the object is created. The new keyword represents an
operation called instantiation of a class, which means an object is created based on the speci�ication
described by the code that represents the Base class.

 A class is a template. Objects are created using this template and are called instances.

 For now, just let this af�irmation sink in: a public class is visible to all classes everywhere.

When no explicit access modi�ier is mentioned, it is said that the class is declared as default or that it is
package-private. I know it seems confusing that there are two ways to talk about the lack of access
modi�iers, but since you might read other books or blog posts that refer to this situation, it is better to have
all the possibilities listed here.

This means if a class has no access modi�ier, the class can be used to create objects only by the classes
de�ined in the same package. Its scope is limited to the package it is de�ined in. A class without an access
modi�ier can be de�ined in any Java �ile: one that has the same name, or right next to the class that gives the
�ile its name.

 When multiple classes are declared in the same �ile, the public class must have the same name as the
�ile it is de�ined in, thus this is the class that names the �ile.

To test this, let’s add a class named HiddenBase in the Base.java �ile introduced previously, as
depicted in Listing 3-13.

package com.apress.bgn.zero;

public class Base {

 // code omitted

}

class HiddenBase {

 // you cannot see me

}

Listing 3-13 Class with No Access Modi�ier

Notice that the Base class is declared in the com.apress.bgn.zero package. If we try to create an
object of type HiddenBase, in a class declared within package com.apress.bgn.three, the IDE will
warn us by making the text read, and refusing to provide any code completion. Even more, a tab listing the
problems of the current �ile will be opened with an error message that is more than obvious, as depicted in
Figure 3-6.

Figure 3-6 Java class with no accessor modi�ier error

 For now, take this af�irmation and let it sink in as well: a class with no access modi�ier is visible to all
classes (and other types) in the same package.

Inside a class the class members are de�ined: �ields and methods.9 At member-level two more
modi�iers can be applied, aside from the two previously mentioned: private and protected. At
member-level the access modi�iers have the following effect:

public is the same as at top level; the member can be accessed from everywhere.
private means that the member can only be accessed in the class where is declared.
protected means that the member can only be accessed in the package where the class containing it is
declared or by any subclass of its class in another package.
none means that the member can only be accessed from within its own package.

It seems complicated, but once you start writing code you get used to it. On the of�icial Oracle
documentation page, there is even a table with the visibility of members, shown in Table 3-1.10

Table 3-1 Member-Level Accessors Scope

Modi�ier Class Package Subclass World

public Yes Yes Yes Yes

protected Yes Yes Yes No

none (default/package-private) Yes Yes No No

private Yes No No No

To get an overall idea how that table applies into code, the class in Listing 3-14 is very helpful.

package com.apress.bgn.three.same;

public class PropProvider {

 public int publicProp;

 protected int protectedProp;

 /* default */ int defaultProp;

 private int privateProp;

 public PropProvider(){

 privateProp = 0;

 }

}

Listing 3-14 PropProvider a Java class with Members Decorated with Various Accessors

The class PropProvider declares four �ields/properties, each with a different access modi�ier. The
�ield privateProp can only be modi�ied within the body of this class. This means that all other members
of this class can read the value of this property and change it.

At this point in the book, only methods have been mentioned as being other types of members.
But classes can be declared inside the body of another class. Such a class is called a nested class and has

access to all the members of the class that is wrapped around it, including the private ones. Figure 3-7
depicts the modi�ied PropProvider class that has an extra method added, named printPrivate. This
method reads the value of the private �ield and prints it. A nested class named LocalPropRequester is
declared as well, and the private �ield is shown being modi�ied in this class (line 56).

Figure 3-7 Table 3-1, column class accessors in Java code

Figure 3-7 is a screenshot of how the Java code is viewed in IntelliJ IDEA. If any �ield is not accessible, it is
displayed in red.

The second column in Table 3-1, the Package column, covers the �ields that are accessible to a class
declared in the same package as class PropProvider . Figure 3-8 depicts a class named PropRequester
class trying to modify all �ields in class PropProvider. Notice the private �ield is shown in bright red. This
means the �ield is not accessible, and IntelliJ IDEA is being quite obvious about it.

Figure 3-8 Table 3-1, column package accessors in Java code

The third column in Table 3-1, the Subclass column, covers the �ields that are accessible to a subclass
of class PropProvider. A subclass inherits states and behavior from a class it derives from that is called
its superclass. The subclass is created using the extends keyword together with the superclass name.
Figure 3-9 depicts a class named SubClassedProvider class trying to modify all �ields inherited from
PropProvider . Notice the private �ield and the �ield without an accessor shown in bright red. This means
the �ields are not accessible, and IntelliJ IDEA is being quite obvious about it.

Figure 3-9 Table 3-1, column subclass accessors in Java code

 The �ield without an accessor is not accessible in the previous example, because the subclass in
declared in a different package. If the subclass is moved in the same package, the rules from the Package
column in Table 3-1 apply.

The third column in Table 3-1, the World column, applies to all classes outside the package where class
PropProvider is declared, that are not subclasses of this class. Figure 3-10 depicts a class named
AnotherPropRequester that tries to access all �ields declared in PropProvider. As expected only the
public �ield is accessible, and the rest are shown in red.

Figure 3-10 Table 3-1, column world accessors in Java code

 If you are trying to build a project outside a smart editor like IntelliJ IDEA, this won’t work. The error
messages will let you know that there is a compilation error, what is the cause, and where. For example,
building the chapter03 subproject containing the AnotherPropRequester class using the Maven
build tool fails. The following error messages are displayed in the terminal:

[ERROR] Failed to execute goal org.apache.maven.plugins:maven-compiler-

plugin:3.8.1:compile (default-compile) on project chapter03: Compilation fail

Compilation failure:

[ERROR] /Users/iulianacosmina/apress/workspace/java-17-for-absolute-

beginners/chapter03/src/main/java/com/apress/bgn/three/other/AnotherPropReque

[42,17] protectedProp has protected access in com.apress.bgn.three.same.PropP

[ERROR] /Users/iulianacosmina/apress/workspace/java-17-for-absolute-

beginners/chapter03/src/main/java/com/apress/bgn/three/other/AnotherPropReque

[44,17] defaultProp is not public in com.apress.bgn.three.same.PropProvider;

accessed from outside package

[ERROR] /Users/iulianacosmina/apress/workspace/java-17-for-absolute-

beginners/chapter03/src/main/java/com/apress/bgn/three/other/AnotherPropReque

[46,17] privateProp has private access in com.apress.bgn.three.same.PropProvi

Build tools and editors are pretty good at letting you know when something is wrong in your Java code.
Learn to use them well, trust them, and they will increase your productivity. Sure, there are hiccups, but not
that many.

You will probably come back to Table 3-1 once or twice after you start writing Java code. Everything just
mentioned is still valid even after the introduction of modules (if you con�igure module access properly, that
is).

Modules
Starting with Java 9 a new concept was introduced: modules.11 Java modules represent a more powerful
mechanism to organize and aggregate packages. The implementation of this new concept took more than 10
years. The discussion about modules started in 2005, and the hope was for them to be implemented for Java
7. Under the name Project Jigsaw, an exploratory phase eventually started in 2008. Java developers hoped a
modular JDK would be available with Java 8, but that did not happen.

Modules �inally arrived in Java 9 after three years of work (and almost seven of analysis). Supporting
them delayed the of�icial release date of Java 9 to September 2017.12

A Java module is a way to group packages and con�igure more granulated access to package contents. A
Java module is a uniquely named, reusable group of packages and resources (e.g., XML �iles and other types
of non-Java �iles) described by a �ile named module-info.java, located at the root of the source
directory. This �ile contains the following information:

the module’s name
the module’s dependencies (that is, other modules this module depends on)
the packages it explicitly makes available to other modules (all other packages in the module are
implicitly unavailable to other modules)
the services it offers
the services it consumes
to what other modules it allows re�lection
native code
resources
con�iguration data

In theory, module naming resembles package naming and follows the reversed-domain-name
convention. In practice, just make sure the module name does not contain any numbers and that it reveals
clearly what its purpose is. The module-info.java �ile is compiled into a module descriptor, which is a
�ile named module-info.class that is packed together with classes into a plain old JAR �ile. The �ile is
located at the root of the Java source directory, outside of any package. For the chapter03 project
introduced earlier, the module-info.java �ile is located in the src/main/java directory, at the same
level with the com directory; the root of the com.apress.bgn.three package Figure 3-11.

Figure 3-11 Location of the module-info.java �ile

As any �ile with *.java extension, the module-info.java is compiled into a *.class �ile. As the module
declaration is not a part of Java type declaration, module is not a Java keyword, so it can still be used when
writing code for Java types; as a variable name, for example. For package the situation is different, as every
Java type declaration must start with a package declaration. Just take a look at the SimpleReader class
declared in Listing 3-15.

package com.apress.bgn.three;

public class SimpleReader {

 private String source;

 // code omitted

}

Listing 3-15 SimpleReader Class

You can see the package declaration, but where is the module? Well, the module is an abstract concept,
described by the module-info.java. So starting with Java 9, if you are con�iguring Java modules in your
application, Figure 3-4 evolves into Figure 3-12.

Figure 3-12 Java modules represented visually

A Java module is a way to logically group Java packages that belong together.
The introduction of modules allows for the JDK to be divided into modules too. The java --list-

modules command lists all modules in your local JDK installation. Listing 3-16 depicts the output of this
command executed on my personal computer where currently JDK 17-ea is installed.

$ java --list-modules

java.base@17-ea

java.compiler@17-ea

java.datatransfer@17-ea

java.desktop@17-ea

output omitted

Listing 3-16 JDK 17-ea Modules

Each module name is followed by a version string @17-ea in the previous listing, which means that the
module belongs to Java version 17-ea.

So if a Java application does not require all modules, a runtime can be created only with the modules that
it needs, which reduces the runtime’s size. The tool to build a smaller runtime customized to an application
is called jlink and is part of the JDK executables. This allows for bigger levels of scalability and increased
performance. How to use jlink is not an object of this book. The focus of the book is learning the Java
programming language, so the technical details of the Java platform will be kept to a minimum—just enough
to start writing and executing code con�idently.

There are multiple bene�its of introducing modules that more experienced developers have been waiting
for years to take advantage of. But con�iguring modules for bigger and more complex projects is no walk in
the park, and most software companies they either preffer to stick to JDK 8 or to avoid con�iguring modules
altogether.

The contents of the module-info.java can be as simple as the name of the module and two brackets
containing the body, as shown in Listing 3-17.

module chapter.three {

}

Listing 3-17 A Simple module-info.java Con�iguration

Advanced Module Con�igurations
A Java module declaration body contains one or more directives that are constructed using the
keywords in Table 3-2. These directives represent access con�igurations and dependency requirements for
the packages and classes contained in the modules.

This book contains an appendix that provides examples for all directives. For the purpose of learning the
Java language the only ones you really need are requires and exports. In this edition of the book I will
explain each of these directives in depth as soon as the context will allow for them to be understood
completely, and I will add analogies with real world events and scenarios to make sure the idea comes
through. In this chapter only the two main directives will be explained �irst.

Modules can depend on one another. The project for this book is made of 13 modules, and most on
them depend on module chapter.zero. This module contains the basic components used to build more
complex components in the other modules. For example, classes inside module chapter.three need
access to packages and classes in module chapter.zero. Declaring a module dependency is done by using
the requires directive, as depicted in Listing 3-18.

module chapter.three {

 requires chapter.zero;

}

Listing 3-18 A Simple module-info.java Con�iguration

The preceding dependency is an explicit one. But there are also implicit dependencies. For example, any
module declared by a developer implicitly requires the JDK java.base module. This module contains the
foundational APIs of the Java SE Platform, and no Java application could be written without it. This implicit
directive ensures access to a minimal set of Java types, so basic Java code can be written. Listing 3-18 is
equivalent to Listing 3-19.

module chapter.three {

 requires java.base;

 requires chapter.zero;

}

Listing 3-19 A Simple module-info.java Con�iguration with an Explicit Directive of requires java.base

 Declaring a module as required, means that that module is required when the code is compiled—
frequently referred to as compile time and when the code is executed—frequently referred to as runtime.
If a module is required only at runtime, the requires static keywords are used to declare the dependency.
Just keep that in mind for now, it will make sense when we talk about web applications.

Now chapter.three depends on module chapter.zero. But does this mean chapter.three can
access all public types (and their nested public and protected types) in the all the packages in
module chapter.zero ? If you are thinking that this is not enough, you are right. Just because a module
depends on another, it does not mean it has access to the packages and classes it actually needs to. The
required module must be con�igured to expose its insides. How can this be done? In our case, we need to
make sure module chapter.zero gives access to the required packages. This is done by customizing the
module-info.java for this module by adding the exports directive, followed by the necessary package
names. Listing 3-20 depicts the module-info.java �ile for the chapter.zero module that exposes its
single package.

module chapter.zero {

 exports com.apress.bgn.zero;

}

Listing 3-20 The module-info.java Con�iguration File for the chapter.zero Module

 Think about it like this: you are in your room cutting out Christmas decorations, and you need a
template for your decorations. Your roommate has all the templates. But just because you need it doesn’t
mean that it will magically appear. You need to go and talk to your roommate. Needing your roommate’s
assistance can be viewed as the requires room-mate directive. After talking to your roommate, he will
probably say: Sure, come in, they are on the desk! Take as many as you need. This can be considered the
exports all-templates-on-desk directive. The desk is probably a good analogy for a package.

Using the con�iguration in Listing 3-20 we have just given access to the com.apress.bgn.zero
package, to any module con�igured with a requires module.zero; directive. What if we do not want
that? (Considering the previous tip, your roommate just left the door to his room open, so anybody can enter
and get those templates!)

What if we want to limit the access to module contents only to the chapter.three module? (So your
roommate has to give you his templates only to you.) This can be done by adding the to keyword followed
by the module name to clarify, that only this module is allowed to access the components. This is the
quali�ied version of the exports directive mentioned in Table 3-2.

Table 3-2 Java Module Directives

Directive Purpose

requires Speci�ies that the module depends on another module.

exports One of the module’s packages whose public types (and their nested public and protected types) should be accessible to
code in all other modules.

exports …
to

This is the quali�ied version of the exports directive. It enables specifying in a comma-separated list precisely which module or
module code can access the exported package.

open Used at module level declaration (open module mm {}), and allows re�lective access to all module packages. Java Re�lection is
the process of analyzing and modifying all the capabilities of a class at runtime and works on private types and members too. So
before Java 9, nothing was really encapsulated.

opens Is used inside the body of a module’s declaration to selectively con�igure access through re�lection only to certain packages.

opens …
to

This is the quali�ied version of the opens directive. It enables specifying in a comma-separated list precisely which module or
module code can access its packages re�lectively.

uses Speci�ies a service used by this module—making the module a service consumer. A service in this case represents the full name of
a interface/abstract class that another module provides an implementation for.

provides
… with

Speci�ies that a module provides a service with a speci�ic implementation—making the module a service provider.

transitive Used together with requires to specify a dependency on another module and to ensure that other modules reading your module
also read that dependency—known as implied readability.

If you were curious and read the recommended Jar Hell article, you noticed that one of the concerns of
working with Java sources packed in Jars was security. This is because even without access to Java sources,
by adding a jar as a dependency to an application, objects can be inspected, extended, and instantiated. So
aside from providing a reliable con�iguration, better scaling, integrity for the platform, and improved
performance, the goal for introduction of modules was in fact better security.

Listing 3-21 depicts the module-info.java �ile for the chapter.zero module that exposes its
single package only to the chapter.three module.

module chapter.zero {

 exports com.apress.bgn.zero to chapter.three;

}

Listing 3-21 Advanced module-info.java Con�iguration File for the chapter.zero Module

More than one module can be speci�ied to have access, by listing the desired modules separated by
commas, as depicted in Listing 3-22.

module chapter.zero {

 exports com.apress.bgn.zero to chapter.two, chapter.three;

}

Listing 3-22 Advanced module-info.java Con�iguration File for the chapter.zero Module with Multiple Modules

The order of the modules is not important, and if there is a lot of them you can place them on multiple
lines. Just make sure to end the declaration with a ; (semicolon).

This is all that can be presented about modules at this stage in the book, but fear not: all the other
directives will be covered at the right time.

How to Determine the Structure of a Java Project
There are a few ways Java projects can be structured and this depends on the following:

project scope
build tool used

You might wonder why the project scope in�luences its structure, and you might expect there should be a
standard for this, right? There is more than one standard, and that is dependent on the project scope. The
reason for creating a Java project in�luences its size. If a project is small it might not require you to split the
sources into subprojects, and it might not need a build tool either, since build tools come with their own
standard way of organizing a project. Let’s start with the smallest Java project ever, which should just print
"Hello World!" to the console.

The “HelloWorld!” Project in IntelliJ IDEA
As a side note, you do not even need a project , because you have jshell. Just open a terminal (command
Prompt for Windows), open jshell, and type the System.out.print("Hello World!") statement,
as depicted in Listing 3-23.

jshell>

| Welcome to JShell -- Version 17-ea

| For an introduction type: /help intro

jshell> System.out.print("Hello World!")

Hello World!

Listing 3-23 jshell Hello World!

Since you have installed IntelliJ IDEA, let’s create a Java project and check what project structure the
editor chooses for us. Start with the �irst IntelliJ IDEA dialog window and click on the Create New
Project option. A second dialog window will appear on top with the types of projects you can create
being listed on the left. The two dialog windows mentioned here are depicted in Figure 3-13.

Figure 3-13 Creating an IntelliJ IDEA project con�iguration starting dialog windows

Select Java project type from the left and click Next without selecting any of the additional libraries and
frameworks listed on the right.

The next dialog window allows you to select a template for your project. We’re going to skip it by clicking
Next.

The next dialog window allows you to select the project name and location. As we are using Java 17, you
can notice at the bottom a section used to con�igure the Java module. This con�iguration window is depicted
in Figure 3-14.

Figure 3-14 IntelliJ IDEA project name and location con�iguration dialog window

Use sandbox for both project name and module name and click on Finish. The next window is the
editor window. This is where you write your code. If you expand the sandbox node on the left (that section

is called the Project view), you can see that the project is built using the JDK you have installed (in this case
17). A src directory was created for you. Your project should look a lot like the one depicted in Figure 3-15.

Figure 3-15 IntelliJ IDEA project view

Before writing code, let’s check out what other project settings are available. IntelliJ IDEA provides you
access to view and edit project properties through the File > Project Structure menu item. If you
click it a dialog window will open similar to the one depicted in Figure 3-16.

Figure 3-16 IntelliJ IDEA project settings tab

By default, the Project settings tab is opened. In the previous �igure there are two arrows attracting
your attention to the Project SDK: section which is actually depicting the JDK version for a Java project
and the Project language level: section. At the time this chapter was written, JDK 17 EA is the most
recent version. The most recent version of IntelliJ IDEA supports syntax and code completion for Java 17,
and that is why is depicted here. This is the meaning of the project language level setting.

If you switch to the tab named Modules you will see the information depicted in Figure 3-17.

Figure 3-17 IntelliJ IDEA project modules tab

 The previous image requires a clari�ication. Aside from Java modules, which wrap together
packages, a module is also a way to wrap up together Java sources and resource �iles with a common
purpose within a project. Before Oracle introduced the module concept as a way to modularize Java
applications, the code making up these applications was already modularized by developers that needed
to structure big projects in some practical way.

In the Modules tab, you can see how many parts (modules) a project has and the settings for each part.
The sandbox project has one part, one module named also sandbox, and the source for this module is
contained in the src directory. If we want to write a class that prints “Hello World!”, the �ile called
HelloWorld.java has to be placed under it. If you click-right on the src directory, the menu depicted in
Figure 3-18 appears.

Figure 3-18 IntelliJ IDEA menu listing which Java objects can be created in the src directory

Aside from the Java Class option, there are a few red arrows showing you what other components
can be in the src directory. Let’s go ahead and create our class. Click on the Java Class menu option and
after introducing the class name select Class from the list below the test �ield. In Figure 3-19 you can see
all the Java types you can create.

Figure 3-19 IntelliJ IDEA dialog window to create a Java type

At the beginning of this chapter it was mentioned that the core building block of a Java application is the
class, but that there are other types in Java except that. The list in the previous �igure shows the �ive Java
types are listed. Each of them is explained in detail later; for now, notice that a �ile named
HelloWorld.java was created under the src directory and the contents of that �ile are as simple as
shown in Listing 3-24.

public class HelloWorld {

}

Listing 3-24 The HelloWorld Class

You have just created your �irst Java class, in your �irst very simple Java project. It does nothing yet. The
class is compiled by selecting the Build Project option from the IntelliJ IDEA Build menu, or by pressing
a combination of keys that is different for each operating system. Compiling the class produces the
HelloWorld.class �ile, containing the bytecode. By default, IntelliJ IDEA stores compilation results into a
directory named out/production. The menu option for compiling your project and the result are
depicted in Figure 3-20. The menu option is highlighted in green.

Figure 3-20 IntelliJ IDEA: how to compile a Java project

It is time we make the class print Hello World! For that we need to add a special method to the class. Any
Java desktop application has a special method named main that has to be declared in a top-level class. This
method is called by the JRE to run the Java program/application, and I call it the entry point. Without such a
method, a Java project is just a collection of classes that is not runnable, cannot be executed, and cannot
perform a certain function.

 Imagine it like this: it’s like having a car, but you have no way of starting it, because the ignition lock
cylinder is missing. By for all intents and purposes it is a car, but it cannot perform the main purpose of a
car, which is to actually take you somewhere. You can imagine the main method as being the ignition lock
cylinder, where the JRE will insert the key to get your application running. Let’s add that method to the
HelloWorld class.

 Because IntelliJ IDEA is an awesome editor, you can generate the main method by typing psvm and
pressing the <Tab> key. The four letters represent the starting letter of all the components of the method
declaration: public, static, void, and main.

The HelloWorld class with a main method that prints the text Hello World! is depicted in Listing 3-25.

public class HelloWorld {

 public static void main(String... args) {

 System.out.println();

 }

}

Listing 3-25 The HelloWorld Class with the main Method

Now that we have a main method , the code can be executed (or run). For this, in IntelliJ IDEA you have
also two options:

from the Run menu choose, option Run [ClassName]
or just click-right on the class body and select Run [ClassName].main() from the menu that
appears.13

Figure 3-21 depicts both menu items that you can use to execute the class, as well as the result of the
execution.

Figure 3-21 IntelliJ IDEA: how to execute a Java class

This is the most basic structure for a Java Project. This project is so simple that it can also be compiled
manually from the command line. So let’s do that!

The “HelloWorld!” Project Compiled and Executed from the Command Line
You’ve probably noticed the Terminal button in your IntelliJ IDEA. If you click that button, inside the editor
a terminal will open. For Windows it will be a Command Prompt instance, for Linux and macOs will be the
default shell. IntelliJ will open your terminal right into your project root. Here is what you have to do next:

enter the src directory by executing the following command: cd src
cd is a command that works under Windows and Unix systems as well and is short for change directory
compile the HelloWorld.java �ile by executing: javac HelloWorld.java
javac is a JDK executable used to compile Java �iles, that IntelliJ IDEA calls in the background as well
run the resulting bytecode from the HelloWorld.class �ile by executing: java HelloWorld

Figure 3-22 depicts the execution of those commands, in a terminal in IntelliJ IDEA.

Figure 3-22 Manually compiling and running the HelloWorld class in a terminal inside IntelliJ IDEA

Looks simple, right? And it actually is that simple, because no packages or Java modules were de�ined.
But wait, is that possible? Well, yes. If you did not de�ine a package, the class is still part of an unnamed
default package that is provided by default by the JSE platform for development of small, temporary,
educational applications, like the one you are building here.

So let’s make our project a little bit more complicated and add a named package for our class to be in.

Putting the “HelloWorld” Class in a Package
In Figure 3-18, in the menu listed contains a Package option . Click-right on the src directory and select it.
A small dialog window will appear where you have to enter the package name. Enter com.sandbox. In
Figure 3-23 the dialog window is depicted. If the package you are trying to create already exists, an error
message is displayed in red.

Figure 3-23 Creating duplicate package in IntelliJ IDEA

Now we have a package, but the class is not in it. To get the class there, just click on it and drag it.
Another dialog window will appear to con�irm that this is what you really want to do, as depicted in Figure
3-24.

Figure 3-24 Moving a class into a package in IntelliJ IDEA

Click on the Refactor button and look at what happens to the class. The class should now start with a
package com.sandbox; declaration. If you rebuild your project and then look at the production
directory, you will see something similar to what is depicted in Figure 3-25.

Figure 3-25 New directory structure after adding the com.sandbox package

Obviously if you compile and execute the class manually, you have to consider the package now, so your
commands will change to:

~/sandbox/src/> javac com/sandbox/HelloWorld.java

~/sandbox/src/> java com/sandbox/HelloWorld

So what happens when modules are con�igured too? There is a default unnamed module, and all JARs,
modular or not, and classes on the classpath will be contained in it. This default and unnamed module
exports all packages and reads all other modules. Because it does not have a name it cannot be required and
read by named application modules. Thus, even if your small project seems to work with JDKs with versions
9 or above, it cannot be accessed by other modules, but it works because it can access others. (This ensures
backward compatibility with older versions of the JDK.) This being said, let’s add a module in our project as
well.

Con�iguring the “com.sandbox” Module
Con�iguring a module is as easy as adding a module-info.java �ile under the src directory. In Figure 3-
18, the menu contains a module-info.java option and if you select that, the IDE will generate the �ile for
you. All is well and �ine, and if you do not like the module name that was generated for you, you can change
it. I changed it to com.sandbox to respect the module naming convention established by Oracle
developers. The �ile is initially empty, as depicted in Listing 3-26.

module com.sandbox {

}

Listing 3-26 The com.sandbox Module Con�iguration File

What happens now that we have a module? Not much from the IDEs point of view. But if you want to
compile a module manually you have to know a few things. I compiled our module using the command in
Listing 3-27.

~/sandbox/src/> javac -d ../out/com.sandbox \

 module-info.java \

 com/sandbox/HelloWorld.java

Listing 3-27 Manually Compiling a Package Enclosed within a Module

 “\” is a macOS/Linux separator. On Windows, either write the whole command on a single line or
replace “\” with “^”.

The previous command is built according to the template in Listing 3-28.

javac -d [destination location]/[module name] \

 [source location]/module-info.java \

 [java files...]

Listing 3-28 Template for Command to Manually Compile a Package Enclosed Within a Module

The -d [destination] determines where the results of the execution should be saved. The reason
the command line in Listing 3-27 speci�ies the output folder as /out/com.sandbox is to make it clear that
com.sandbox is the enclosing module. Under this directory, we’ll have the normal structure of the
com.sandbox package. The contents of the out directory are depicted in Figure 3-26.

Figure 3-26 Java module com.sandbox compiled manually

As you have noticed in this example, the module does not really exist until we compile the sources,
because a Java module is more of a logical mode of encapsulating packages described by the module-
info.class descriptor. The only reason the com.sandbox directory was created is that we speci�ied it as
argument in the javac -d command.

Now that we’ve managed to compile a module, Listing 3-29 shows you how to run the HelloWorld
class when it is enclosed in a module.

~/sandbox/> java --module-path out \

 --module com.sandbox/com.sandbox.HelloWorld

 Hello World! # result

Listing 3-29 Manually Executing a Class Enclosed Within a Module

The previous command is built according to the template in Listing 3-30.

java --module-path [destination] \

 --module [module name] /[package name].HelloWorld

Listing 3-30 Template for Command to Manually Execute a Class Enclosed Within a Module

Oracle Magazine edition from September 2017 mentioned examples for the �irst time and although
Oracle developers have decided that module names should follow the same rules as packages, to me this
seems a little redundant, especially in complex projects where package names tend to become very long.
Should you have module names just as long?

The truth is that people make the standards, and most times the practical becomes the standard. Since
2007, projects that have managed to embrace modules have chosen simpler, more practical module names.
For example, the team that created the Spring Framework decided to name their modules spring.core
instead of org.springframework.core , spring.beans instead of
org.springframework.beans, and so on. So name your modules as you wish, as long as you avoid
special characters and numbers.

Java Projects Using Build Tools, Mostly Maven
Apache Maven is a build automation tool used primarily for Java projects. Although Gradle is gaining ground,
Maven is still one of the most-used build tools. Tools like Maven and Gradle are used to organize the source
code of an application in interdependent project modules and con�igure a way to compile, validate, generate
sources, test, and generate artifacts automatically. An artifact is a �ile, usually a JAR, that gets deployed to a
Maven repository. A Maven repository is a location on a HDD where JARs get saved in a special directory
structure.

Any discussion about build tools must start with Maven, because this build tool standardized a lot of the
terms we use in development today. A project split into multiple subprojects can be downloaded from
GitHub and build in the command line or imported into IntelliJ IDEA. This approach will make sure that you
get quality sources that can be compiled in one go. It is also practical, because I imagine you do not want to
load a new project in IntelliJ IDEA every time you start reading a new chapter. Also, it makes it easier for me
to maintain the sources and adapt them to a new JDK, and with Oracle releasing so often, I need to be able to
do this quickly.

The project you will use to test the code written in this book (and write your own code if you want to) is
called java-17-for-absolute-beginners. It is a multimodule Maven project. The �irst level of the
project is the java-17-for-absolute-beginners project, which has a con�iguration �ile named
pom.xml. In this �ile, all dependencies and their versions are listed. The child projects, the ones on the
second level, are the modules of this project. We call them child projects because they inherit those
dependencies and modules from the parent project. In their con�iguration �iles, we can specify what
dependencies are needed from the list de�ined in the parent.

These modules are actually a method of wrapping up together sources for each chapter, which is why
these modules are named chapter00, chapter01, and so on. If a project is big and needs a lot of code to
be written, the code is split again in another level of modules. Module chapter05 is such a case, and is
con�igured as a parent for the projects underneath it. In Figure 3-27 you can see what this project looks like
loaded in IntelliJ IDEA, and module chapter05 is expanded, so you can see the third level of modules. Each
level is marked with the corresponding number.

Figure 3-27 Maven multilevel project structure

If you have loaded it into IntelliJ IDEA like you were taught in Chapter 2, you can make sure everything is
working correctly by building it. Here’s how you do it:

You can do it by using the IntelliJ IDEA editor, where in the upper right side you should have a tab called
Maven. If the projects are loaded like they are depicted in Figure 3-28, the project was loaded correctly. If
the Maven tab is not visible just look for a label like the one marked with (1) and click on it. Expand the
java-17-for-absolute-beginners (root) node until you �ind the build task, marked with (2). If
you double-click it and in the view at the bottom of the editor you do not see any errors, all your projects
were built successfully. So yes, you should de�initely see the BUILD SUCCESS (3) message.

Figure 3-28 Maven project view

The second way to make sure the Maven project is working as expected is to build it from the command
line. Open an IntelliJ IDEA terminal, and if you installed Maven on the system path as explained in Chapter 2
just type mvn and hit <Enter>.

 The main pom.xml �ile, located in the root of the project, has a default goal con�igured through the
following line:

<defaultGoal>clean install</defaultGoal>

It declares the two Maven execution phases required to build this project. Without this element in the
con�iguration, to build the project the two phases would be speci�ied in the command, for example: mvn
clean install.

In the command line you might see some warnings if the JDK 17 is still unstable when this book reaches
you, but as long as the execution ends with BUILD SUCCESSFUL everything is all right.

Aside from the sandbox project, which is simple enough for you to create yourself, all the classes,
modules, and packages mentioned in this section are part of this project. The chapter00 and chapter01

do not really contain classes speci�ic to those chapters; I just needed them to be able to construct the Java
module examples. IntelliJ IDEA sorts modules in alphabetical order, so the naming for the chapter modules
was chosen this way so that they are listed in the normal order you should work with them.

Until now, this chapter has been focused on the building blocks of Java applications and we created a
class that prints Hello World! by following the instructions, but not all of the details were explained. Let’s do
that now and even enrich the class with new details.

Explaining and Enriching the “Hello World!” Class
Previously , we wrote a class named HelloWorld in our sandbox project. This class is copied to the
chapter03 project, in package com.apress.bgn.three.helloworld. This chapter starts with a list
of the main components of a class. The HelloWorld class contains a few of those elements that are
explained in more detail. In Figure 3-29, the HelloWorld class is depicted in the IntelliJ IDEA editor.

Figure 3-29 The HelloWorld class in the java-17-for-absolute-beginners project

The lines contain different statements that are explained in the following list and the number of the line
matches the number in the list.

1.
the package declaration: when classes are part of a package their code must start with this line that
declares the package enclosing them. package is a reserved keyword in Java and cannot be used for
anything else but declaring a package.

<empty for convenience>: left empty, so the picture looks nicer

8.
the class declaration: this is the line where we declare our type:

– it is public, so it can be seen from everywhere
– it is a class
– it is named HelloWord
– it has a body enclosed in curly brackets and the opening bracket is on this line. But it can be on the

next one too, since empty spaces are ignored.

9. the main() method declaration : in Java the method name and the number, type, and order of its
parameters is referred to as the method signature. A method also has a return type, as in the type of
result it returns. But there is also a special type that can be used to declare that a method does not
return anything. In the order of the appearance, here is what every term of the main() method
represents:

– public method accessor: the main method must be public otherwise JRE can’t access it and call
it.

– static: remember at the beginning of this chapter it was mentioned that a class has members (�ields
and methods)? When an object of that class type is created, it has the �ields and methods as declared
by the class. The class is a template for creating objects. Because of the static keyword, though,
the main method is not associated with an object of a class type, but with the class itself. More
details about this in the next chapter

details about this in the next chapter.

– void: this keyword is used here to tell us that the main method does not return anything, so it’s like
a replacement for no type, because if nothing is returned there is no need for a type.

– string… args or String[] args: methods are sometimes declared as receiving some input data;
String[] args represents an array of text values. The three dots is another way to specify that a
method can have more than one argument of the same type. The three dots notation can only be
used in a method argument, and are called varargs. (The varargs argument also has to be the only
parameter for the method, or the last one, otherwise resolving the arguments becomes an
impossible job.) It means you can pass in an array of parameters without explicitly creating the
array. Arrays are sets of data of �ixed length, in mathematics they are known as one-dimension matrix
or vector. String is the class representing text objects in Java. The [] means array and args is its
name. But wait, we’ve run this method before and we did not need to provide anything! It is not
mandatory, but you’ll see how you can give it arguments (values provided to the method, that will be
used by the code in its body) after this list.

10.
System.out.println(“HelloWorld!”); is the statement used for writing Hello World! in the console.

11.
} is the closing bracket of the main method body.

12.
} is the closing bracket for the class body.

If we execute this class, we will see Hello World! being printed in the console. You were shown
earlier in Figure 3-21 how to execute a class with a main() method in it. After executing a class that way,
IntelliJ IDEA automatically saves the con�iguration for that execution in a Run Con�iguration and displays it
in a drop-down list, next to a triangular green button, that can be used to execute that class by clicking on it,
which are both placed on the header of the IDE and ostentatiously pointed to you in Figure 3-29.

Those two elements are really important, because a run con�iguration can be edited and arguments can
be added for the JVM and the main method. Let’s �irst modify the main method to do something with the
arguments �irst.

public class HelloWorld {

 public static void main(String... args) {

 System.out.println("Hello " + args[0] + "!");

 }

}

Listing 3-31 Main Method with varargs

 Arrays are accessed using indexes of their elements, and the counting starts in Java from 0.
Consequently, the �irst member of an array can be found at 0, the second at 1, and so on. But arrays can be
empty, so in the previous code snippet if no argument is speci�ied, the execution of the program will crash,
and in the console, an explicit message will be printed in red.

When a Java program ends because an error during execution time, we say that an exception was
thrown.

When we try to access an empty array, or an element of an array that does not exist, the JVM throws an
object of type ArrayIndexOutOfBoundsException containing the line where the failure happened and
the index of the element we were trying to access. Exception objects are used by the JVM to notify
developers of exceptional situations when a Java execution does not work as expected, and these objects
contain details regarding where in the code it happened and what caused the problem.

The modi�ication we did in the previous code snippet will print the text value provided as argument
when executing the class. Let’s modify the run con�iguration for this class and add an argument. If you click
on the small grey arrow next to the Run Con�iguration name, a menu will appear. Click on the Edit
Con�igurations and inspect the dialog window depicted to you. Figure 3-30 depicts the menu and the dialog
window.

Figure 3-30 Customizing a run con�iguration

In the image, the key elements are highlighted in light blue. IntelliJ IDEA saves a few of your previous
executions, including Maven build tasks, so you can run them again just with one click. In the left of the
Run/Debug Con�igurations dialog window, IntelliJ IDEA groups run con�igurations by their type. By
default, the last run con�iguration is opened on the right side of the window, in this case the run
con�iguration for the HelloWorld class. As you can see there are a lot of options you can con�igure for an
execution and most of them have been automatically decided by the IDE. The program arguments or the
arguments for the main() method are introduced in the text �ield marked in red. In the �igure we introduced
JavaDeveloper, so if you click the Apply and then the Ok button and then execute the class, in the console
instead of Hello World! you should see now Hello JavaDeveloper!

What else can we do with our class? Remember the code the book started with? Let’s put it the main()
method in this class. The code is depicted again in Listing 3-32.

package com.apress.bgn.three.helloworld;

import java.util.List;

public class HelloWorld {

 public static void main(String... args) {

 //System.out.println("Hello " + args[0] + "!");

 List<String> items = List.of("1", "a", "2", "a", "3", "a");

 items.forEach(item -> {

 if (item.equals("a")) {

 System.out.println("A");

 } else {

 System.out.println("Not A");

 }

 });

 }

}

Listing 3-32 A More Complex main Method

The import java.util.List; statement is the only type of statement that can exist between a
package and a class declaration. This statement is telling the Java compiler that an object type
java.util.List will be used in the program. The import keyword is followed by the fully quali�ied
name of the type. A fully quali�ied name of a type is made of the package name(java.util), a dot(.) and
the simple name of the type(List). Without it, the HelloWorld class will not compile. Try it: just put “//”
in front of the statement, which will turn the line into a comment that is ignored by the compiler. You will
see the editor complain by making any piece of code related to that list bright red.

The statement List<String> items = List.of("1", "a", "2", "a", "3", "a");
creates a list of text values. Creating lists this way was introduced in Java 9. Specifying what type of elements
are in a list by using <T> was introduced in Java 5, and it’s called generics. The elements in the list are then
traversed one by one by the forEach method , and each of them are tested to see if they are equal to the "a"
character. The whole expression used to do this is called a lambda expression and this type of syntax was
introduced in Java 8, together with the forEach method.

If you run the class now, in the console you should see a sequence of A and Not A printed, each on its own
line.

Not A

A

Not A

A

Not A

A

The code we have written until now uses quite a few types of objects to print some simple messages in
the console. The List object is used to hold a few String object s. The messages are printed using the
println method that is called on the out object, which is a static �ield in the System class. And these are
just the objects that are visible to you in the code. Under the hood, the List<T> elements are processed by
a Consumer<T> object created on the spot that the lambda expression hides for simplicity reasons, so the
preceding code can be expanded as in Listing 3-33.

package com.apress.bgn.three.helloworld;

import java.util.List;

import java.util.function.Consumer;

public class HelloWorld {

 public static void main(String... args) {

 List<String> items = List.of("1", "a", "2", "a", "3", "a");

 items.forEach(new Consumer<String>() {

 @Override

 public void accept(String item) {

 if (item.equals("a")) {

 System.out.println("A");

 } else {

 System.out.println("Not A");

 }

 }

1

2

3

 });

 }

}

Listing 3-33 A More Complex main Method

Before ending this chapter, I would like to show you another neat thing. The contents of the forEach
block can be written as a single line:

items.forEach(item → System.out.println(item.equals("a") ? "A" : "Not A"));

The previous line can be made even simpler my using something called a method reference . But more
about that a little bit later in the book.

It might look scary now, but I promise that this book introduces each concept in a clear context and
compared with real-world objects and events so you can understand it easily. And if that does not work
there are always more books, more blogs, and of course the of�icial Oracle page for each JDK, which has quite
good tutorials. Where there’s a will, there’s a way.

 Also, take advantage of your IDE! By clicking on any object type in the code while pressing the
Control/Command key, the code of the object class is opened and you can see how that class was written
and you can read the documentation for it directly in the editor. As an exercise, do this for the forEach
method and the System class.

 Most really smart editors have keymaps: groups of keys that when pressed together perform certain
actions like navigation, code generation, execution, and so on. Print the IntelliJ IDEA keymap reference
and get comfortable with it. Your brain is very fast, and when coding, the aim is to type as fast as you
think, if possible. :)

Summary
In this chapter you were introduced to the fundamental blocks of a Java application. You were also taught
how to use JShell to execute Java statements out of the context of an application. You found out how you can
manually compile and Java code that declared packages and modules.

Many of the things you did while following this chapter you will probably do daily after getting a job as a
Java developer (except for the days that you will spend hunting and �ixing bugs in existing code). You will
probably spend a lot of time reading documentation too, because the JDK has a lot of classes, with �ields and
methods you can use to write an application. With each released version things change, and you have to
keep yourself up to date.

The brains has limited capacity; no employer will ever expect you to know every JDK class and method,
but work smart and keep this URL
https://docs.oracle.com/en/java/javase/17/docs/api/index.html (or the one matching
the JDK version used) always opened in your browser. When you have doubts about a JDK class or method,
just read about it on the spot.

Footnotes
Replace {�ilename} with an actual name.

The Oracle JShell user guide can be found at Oracle, “Java Shell User’s Guide,”

https://docs.oracle.com/javase/9/jshell/JSHEL.pdf, accessed October 15, 2021.

Such as interfaces, enums, annotations, and records.

https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/javase/9/jshell/JSHEL.pdf

4

5

6

7

8

9

10

11

12

13

The chapter03.iml is an IntelliJ IDEA project �ile.

When JARs are hosted on a repository, such as The Maven Public Repository, they are also called artifacts. You can also read more about jars at

Oracle, “JAR File Overview,” https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jarGuide.html, accessed
October 15, 2021.

The most-used libraries are logging libraries like Log4J, “Apache Log4j 2,” https://logging.apache.org/log4j/2.x and LogBACK,

“Logback Project,” https://logback.qos.ch, both accessed October 15, 2021.

If you want to know more, a great article about the Jar Hell is Tech Read, “What Is Jar Hell?,” https://tech-

read.com/2009/01/13/what-is-jar-hell, accessed October 15, 2021 (though you might want to read it later, after you have written a
little code of your own).

We will not mention nested classes right now. We’ll get there in Chapter 4.

Aside from that, we can also de�ine other Java types that will be referred to as being nested, but we’ll cross that bridge when we come to it.

We depicted the table to avoid you the hassle of navigating to this URL at Oracle, “Controlling Access to Members of a Class,”

https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html, accessed October 15, 2021.

Build tools such as Maven or Gradle refer to subproject as modules as well, but their purpose is different from the one of the Java modules.

The full history of the Jigsaw project can be found at Open JDK, “Project Jigsaw,” http://openjdk.java.net/projects/jigsaw,

accessed October 15, 2021.

Next to the Run menu item, a combination of keys is depicted that can be used to run the class.

https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jarGuide.html
https://logging.apache.org/log4j/2.x
https://logback.qos.ch/
https://tech-read.com/2009/01/13/what-is-jar-hell
https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html
http://openjdk.java.net/projects/jigsaw

(1)

© Iuliana Cosmina 2022
I. Cosmina, Java 17 for Absolute Beginners
https://doi.org/10.1007/978-1-4842-7080-6_4

4. Java Syntax

Iuliana Cosmina1

Edinburgh, UK

Languages are means of communication, verbal or written, between people. Whether they are natural or
arti�icial, they are made of terms and rules on how to use them to perform the task of communication.
Programming languages are means of communication with a computer. The communication with a
computer is a written communication; basically the developer de�ines some instructions to be executed,
communicates them through an intermediary to the computer, and if the computer understands them,
performs the set of actions and depending on the application type some sort of reply will be returned to the
developer.

In the Java language, the communication is done through an intermediary—the Java Virtual Machine. The
set of programming rules that de�ine how terms should be connected to produce an understandable unit of
communication is called syntax . Java borrowed most of its syntax from another programming language
called C++. C++ has a syntax based on the C language syntax. C syntax borrows elements and rules form
other languages that preceded it, but in essence all these languages are based on the natural English
language. Maybe Java got a little cryptic in version 8 because of the introduction of lambda expressions, but
still, when writing a Java program, if you are naming your terms properly in the English language, the result
should be a code that is easily readable, like a story.

A few details have been covered in Chapter 3. Packages and modules were covered enough to give you a
solid understanding of their purpose to avoid confusion regarding the organization of the project and avoid
aimless fumbling through the code when trying to execute code mentioned in the book. But on other topics
the surface has been barely scratched. Thus, let’s begin our deep dive into Java.

Base Rules of Writing Java Code
Before writing Java code, let’s list a few rules that you should follow to make sure your code not only works,
but is easy to understand and thus maintain or extend. Let’s depict the class we ended Chapter 3 with, by
adding a few details:

01. package com.apress.bgn.four.basic;

02.

03. import java.util.List;

04.

05./**

06. * this is a JavaDoc comment

07. */

08. public class HelloWorld {

09. public static void main(String... args) {

10. //this is a one-line comment

11. List<String> items = List.of("1", "a", "2", "a", "3", "a");

12.

13. items.forEach(item -> {

14. /* this is a

15. multi-line

16. comment */

17. if (item.equals("a")) {

18. System.out.println("A");

https://doi.org/10.1007/978-1-4842-7080-6_4

19. } else {

20. System.out.println("Not A");

21. }

22. });

23. }

24. }

Listing 4-1 The HelloWorld Class with Comments

Each section of the code gets its own section in this chapter. Let’s start with the �irst line.

Package Declaration
A Java �ile starts with the package declaration if the type declared in the �ile is declared within a package.
The package name can contain letters and numbers, separated by dots. Each part matches a directory in the
path to the type contained in it, as shown in Chapter 3. The package declaration should reveal the name of
the application and the purpose of the classes in the package. Let’s take the package naming used for the
sources of this book: com.apress.bgn.four.basic. If we split the package name in pieces, this is the
meaning of each piece:

com.apress represents the domain of the application, or who owns the application in this case.
bgn represents the scope of the code, in this case the book who it is written for: beginners.
four represents the purpose of the classes, to be used with Chapter 4.
basic represents a more re�ined level of the purpose for the classes; these classes are simple, used to
depict basic Java notions.

A package name like the one introduced here that is made of more parts is called a quali�ied package
name. It has a hierarchical structure and package com is the root package. Assuming a type MyType is
declared in this package, this type is referenced in classes in other packages using this import statement:
import com.MyType;.

Package apress is a member of package com and is identi�ied by a name composed of its own name
pre�ixed by the enclosing package and a dot. Assuming a type MyType is declared in this package, this type
is referenced in classes in other packages using this import statement: import com.apress.MyType;.

The same applies to package bgn which is a member of package apress and its type members, and so
on down the package tree.

 You can imagine packages being the programming equivalent of Russian nesting Matryoshka dolls.

Thus, a type is referenced in other types via its fully quali�ied name. The fully quali�ied name of a type
is formed by pre�ixing the type name with the quali�ied name of the package and a dot. Figure 4-1 should
make things pretty clear.

Figure 4-1 Dissection of the fully quali�ied name of a Java type

Import Section
After the package declaration, the import section follows. This section contains the fully quali�ied names of
all classes, interfaces, and enums used within the �ile. Look at the code sample in Listing 4-2.

package java.lang;

import java.io.ObjectStreamField;

import java.io.UnsupportedEncodingException;

import java.lang.annotation.Native;

import java.lang.invoke.MethodHandles;

import java.lang.constant.Constable;

import java.lang.constant.ConstantDesc;

import java.nio.charset.Charset;

import java.util.ArrayList;

// the rest of import statements omitted

public final class String

 implements java.io.Serializable, Comparable<String>, CharSequence,

 Constable, ConstantDesc {

 private static final ObjectStreamField[] serialPersistentFields =

 new ObjectStreamField[0];

 // the rest of the code omitted

}

Listing 4-2 Small Code Snippet from the java.lang.String Class

It is a snippet from the of�icial Java String class. Every import statement represents a reference to the
package, and the name of a class used within the String class body.

Special import statements can be used to import static variables and static methods as well. In the
JDK there is a class used for mathematical processes. It contains static variables and methods that can be
used by developers to implement code that solves mathematical problems. You can use its variables and
methods without the need to create objects of this type, because static members do not belong to an object
of a type, but to the type itself. Check out the code in Listing 4-3.

package com.apress.bgn.four;

import static java.lang.Math.PI;

import static java.lang.Math.sqrt;

public class MathSample {

 public static void main(String... args) {

 System.out.println("PI value =" + PI);

 double result = sqrt(5.0);

 System.out.println("SQRT value =" + result);

 }

}

Listing 4-3 Using Static Imports for Members of Class Math

By putting together import and static we can declare a fully quali�ied name of a class and the
method or the variable we are interested in using in the code. This allows us to use the variable or method
directly, without the name of the class it is being declared in. Without the static imports the code will have to
be rewritten as in Listing 4-4:

package com.apress.bgn.four;

import java.lang.Math;

public class MathSample {

 public static void main(String... args) {

 System.out.println("PI value =" + Math.PI);

 double result = Math.sqrt(5.0);

 System.out.println("SQRT value =" + result);

 }

}

Listing 4-4 Using Import of Class Math

 Fully quali�ied names are a powerful thing. Package names are unique within a module, but package
names are not always unique within an application. Type names are not always unique within an
application either, but fully quali�ied type names, formed by combining the two, are unique within an
application.

 You can also think about packages as home addresses and types as persons. Two persons can have the
same address, but they can’t have the same name. Two persons can have the same name and live at
different addresses. This is how banks and other institutions identify individuals uniquely in the UK or
US, for example.

Fully quali�ied names are not limited to import statements. When two types have the same name and
both are used to declare a third type, the only way to be able to tell the compiler within a type body which
you intend to use is to use the fully quali�ied name. An example of this is shown in Listing 4-5, where a class
Math from package com.apress.bgn.four.math is used within the body of a class where members of
java.lang.Math class are used too.

package com.apress.bgn.four.math;

import java.lang.Math;

public class Sample {

 public static void main(String... args) {

 System.out.println("PI value =" + Math.PI);

 System.out.println("My PI value= " +

com.apress.bgn.four.math.Math.PI);

 }

}

Listing 4-5 Using a Member of Class com.apress.bgn.four.math.Math

When more than one type is used from the same package, the type names can be replaced by a *
(asterisk) that means any visible type from the package can be used in the code of the type being written.
These are called compact import statements . Compacting imports is recommended when using multiple
classes from the same package to write code, or multiple static variables and methods from the same class.
When doing so, the import section of a �ile becomes verbose and dif�icult to read. This is where compacting
comes to help. Compacting imports means replacing all classes from the same package or variables and
methods from the same class with a wildcard, so only one import statement is needed. It works for static
imports too. So the previous MathSample class becomes the one in Listing 4-6.

package com.apress.bgn.four;

import static java.lang.Math.*;

public class MathSample {

 public static void main(String... args) {

 System.out.println("PI value =" + PI);

 double result = sqrt(5.0);

 System.out.println("SQRT value =" + result);

 }

}

Listing 4-6 Using Compacted Imports

Java Grammar
The Java language is case sensitive , and this means that we can write a piece of code like the one depicted
in Listing 4-7 and the code compiles and executes successfully.

package com.apress.bgn.four;

public class Sample {

 public static void main(String... args) {

 int mynumber = 0;

 int myNumber = 1;

 int Mynumber = 2;

 int MYNUMBER = 3;

 System.out.println(mynumber);

 System.out.println(myNumber);

 System.out.println(Mynumber);

 System.out.println(MYNUMBER);

 }

}

Listing 4-7 Java Code Proving Its Case Sensitivity

All four variables are different, and the last four lines print the numbers: 0 1 2 3. Obviously, you cannot
declare two variables sharing the same name in the same context (e.g., in the body of a method), because
you would be basically redeclaring the same variable. The Java compiler does not allow this. If you try to do
this your code will not compile, and even IntelliJ IDEA will try to make you see the error of your ways by
underlining the code with red and showing you a relevant message, as in Figure 4-2, where variable
mynumber was declared twice.

Figure 4-2 Same variable name used twice

There is a set of Java keywords that can be used only for �ixed and prede�ined purposes in the Java code.
A few of them have already been introduced: import, package, public, and class, but the rest of them
will be covered at the end of this chapter with a short explanation for each of them, in Tables 4-2 and 4-3.

 Java keywords cannot be used as identi�iers in code written by developers, so they cannot be used as
names for variables, classes, interfaces, objects, and so on.

One or more types can be declared in a Java source �ile. Whether a class, interface (or
@interface), enum, or class, the declaration of a type must be encased in curly brackets ({}). These are
called block delimiters . import and package statements are not part of the type body. If you take a look
at the code in Listing 4-1, you will notice the brackets are used there to wrap up the following:

contents of a class, also called the body of the class (brackets in lines 08 and 23)
contents of a method, also called the body of a method (brackets in lines 09 and 22)
a set of instructions to be executed together (brackets in lines 13 and 21)

Line terminators : code lines are usually ended in Java by the semicolon (;) symbol or by the ASCII
characters CR, or LF, or CR LF. Semicolons are used to terminate full functioning statements, like the list
declaration in line 11. On a small monitor, when writing code you might be forced to split that statement on
two subsequent lines to keep the code readable. The semicolon at its end tells the compiler that is statement
that is correct only when taken all together. Take a look at Figure 4-3:

Figure 4-3 Different statements samples

The �irst three List declarations are equivalent. When declaring a List this way, you can even split its
elements on multiple lines. The declaration on line 46, however, is written intentionally wrong. A semicolon
is added in line 46, which ends the statement there. That statement is not valid, and the compiler will
complain about it when you try to compile that class by printing an exception saying:

“Error:(13, 46) java: illegal start of expression”.
If the message of the error seems not to �it the example think about it like this: the problem for the

compiler is not the wrongful termination of the statement, but the fact that after the “=” symbol, the

compiler expects to �ind some sort of expression that will produce the value for the badList variable , but
instead it �inds nothing.

Java Identi�iers and Variables
An identi�ier is the name you give to an item in your Java code: class, variable, method, and so on. Identi�iers
must respect a few rules to allow the code to compile and also common-sense programming rules, called
Java coding conventions . A few of them are listed here:

An identi�ier cannot be one of the Java reserved words, or the code will not compile.
An identi�ier cannot be a boolean literal (true, false) or the null literal, or the code will not compile.
An identi�ier can be made of letters, numbers and any of _(underscore), $(dollar sign).
an identi�ier cannot start with a number
Starting with Java 9, a single _(underscore) can no longer be used as an identi�ier, as it became a keyword.
This is probably because in Java 7 numeric literals were introduced and numbers with multiple digits can
be written in a more readable way (e.g., int i = 10_000;).
Developers should declare their identi�iers following camel case writing style, making sure each word or
abbreviation in the middle of the identi�ier name begins with a capital letter (e.g., StringBuilder,
isAdult).

A variable is a set of characters that can be associated with a value. It has a type, and based on it, the set
of values that can be assigned to it are restricted to a certain interval, group of values, or just must follow a
certain format de�ined by that type. For example: the item declared in line 11 in Listing 4-1 is a variable of
type List , and the value associated with it is a list of values.

In Java there are three types of variables:

�ields (also known as properties) are variables de�ined in class bodies outside of method bodies, and
that do not have the keyword static in front of them.
local variables are variables declared inside method bodies, and they are relevant only in that context.
static variables are variables declared inside class bodies with the keyword static in front of them. If
they are declared as public they are accessible within the application wherever the enclosing type is.
(Unless the module does not export the package where they are declared, that is.)

Java Comments
Java comments refer to pieces of explanatory text that are not part of the code being executed and are
ignored by the compiler. There are three ways to add comments within the code in Java and depending on
the characters used to declare them. All three types of comments were used in Listing 4-1, and the following
list explains the purpose of each:

// is used for single line comments (line 10). Developers use this type of comment for adding TODO
statements or explain why a certain piece of code is needed. These comments are mostly intended for the
team members working on the project.
/** ... */ JavaDoc comments, special comments that are exported using special tools into the
documentation of a project called JavaDoc API (lines 05 to 07). Developers use this type of comments to
document their code. There are plug-ins for build tools that can extract the JavaDoc from a project as a
website, that can be then hosted publicly to help other developers using your project.
/* ... */ used for multiline comments (lines 14 to 16). Developers use this type of comment for adding
TODO statements or explain why a certain piece of code is needed, when that explanation is quite long.
These comments are mostly intended for the team members working on the project.

Java Types
In Chapter 3 when introducing the Java building blocks only the class was mentioned, to keep things
simple. It was mentioned that there are other types in Java, and this section introduces all of them. Classes
are the most important, so they will be covered �irst.

Classes
It was mentioned before that classes are just templates for creating objects. Creating an object based on a
class is called instantiation . The resulted object is referred to as an instance of that class. Instances are

named objects because by default any class written by a developer implicitly extends class
java.lang.Object, if no other superclass is declared. What this means is that in Java there is a basic
template for all classes and that is represented by the java.lang.Object class. Any class is by default an
extension of this class, so the class declaration in Listing 4-8 is equivalent to the one in Listing 4-9.

package com.apress.bgn.four.basic;

public class Sample {

}

Listing 4-8 Simple Sample Class Implicitly Extending the java.lang.Object Class

package com.apress.bgn.four.basic;

public class Sample extends Object {

}

Listing 4-9 Simple Sample Class Explictly Extending the java.lang.Object Class

Also, notice how importing the java.lang package is not necessary because the Object class , being
the root class of the Java hierarchy, all classes (including arrays) must have access to extend it. Thus the
java.lang package is implicitly imported as well.

 It was mentioned in Chapter 3 that the java.base module is added as required implicitly in any
Java project that declares a module-info.java. This module exports the java.lang package that
contains the core components to writing Java code.

 Every human being is de�ined by a DNA molecule containing 23 pairs of chromosomes. They declare
the organs and limbs a human should have to look and function as a . . . human. You can view the Object
class as the DNA molecule that declares all the components that a class should have to look and function
as a class within a Java application.

There are other template types that can be used for creating objects in Java. In the following sections we
will introduce them and explain what they are used for. But let’s do so in a context. We will create a family of
templates for de�ining humans. Most Java tutorials use templates for vehicles or geometrical shapes. I want
to model something that anybody can easily understand and relate to. The purpose of the following sections
is to develop Java templates that can be used to model different types of people. The �irst Java template that
was mentioned so far is the class, so let’s continue with that.

Fields
The operation through which instances are created is called instantiation . To design a class that models a
generic human we should think about two things: human characteristics and human actions. What do all
humans have in common? A lot, but for the purpose of this section, let’s choose three generic attributes: they
have a name, age, and height. These attributes map in a Java class to variables named �ields or properties.
The �irst version of the Human class is depicted in Listing 4-10.

package com.apress.bgn.four.base;

public class Human {

 String name;

 int age;

 float height;

}

Listing 4-10 Simple Human Class

In the previous code sample the �ields have different types, depending on what values should be
associated with them. For example, name can be associated with a text value, like “Alex,” and texts are
represented in Java by the String type. The age can be associated with numeric integer values, so is of type
int. For the purpose of this section, we’ve considered that the height of a person is a rational number like
1.9, so we used the special Java type for this kind of values: float.

So now we have a class modelling some basic attributes of a human. How do we use it? We need a
main(..) method and we need to create an object of this type: we need to instantiate this class. In Listing
4-11 a human named “Alex” is created.

package com.apress.bgn.four.base;

public class BasicHumanDemo {

 public static void main(String... args) {

 Human human = new Human();

 human.name = "Alex";

 human.age = 40;

 human.height = 1.91f;

 }

}

Listing 4-11 Simple Human Object Being Created

To create a Human instance , we use the new keyword. After the new keyword we call a special method
called a constructor. We’ve mentioned methods before, but this one is special. Some developers do not even
consider it a method. The most obvious reason for this is that it wasn’t de�ined anywhere in the body of the
Human class. So where is it coming from? It’s a default constructor without parameters that is automatically
generated by the compiler unless an explicit one is declared (with or without parameters). A class cannot
exist without a constructor, otherwise it cannot be instantiated, which is why the compiler generates one if
none was explicitly declared. The default constructor calls super(), which invokes the Object no
argument constructor that initializes all �ields with default values. This is tested by the code sample in
Listing 4-12:

package com.apress.bgn.four.base;

public class BasicHumanDemo {

 public static void main(String... args) {

 Human human = new Human();

 System.out.println("name: " + human.name);

 System.out.println("age: " + human.age);

 System.out.println("height: " + human.height);

 }

}

Listing 4-12 Simple Human Object Being Created Without Setting Values or Its Fields

What do you think will happen? If you think that some default values (neutral) will be printed, you are
absolutely right. Listing 4-13 depicts the output printed in a console when the code in Listing 4-12 is
executed .

name: null

age: 0

height: 0.0

Listing 4-13 Default Values for the Fields of a Simple Human Object

Notice that the numeric variables were initialized with 0, and the String value was initialized with
null. The reason for that is that the numeric types are primitive data types and String is an object data
type. The String class is part of the java.lang package and is one of the prede�ined Java classes that

is used to create objects of type String. It is a special data type that is used to represent text objects. We’ll
get deeper into data types in the following chapter.

Class Variables
Aside from attributes that are speci�ic to each human in particular, all humans have something in common: a
lifespan, which for the later period is assumed to be 100 years long. It would be redundant to declare a �ield
called lifespan, because it would have to be associated with the same value for all human instances. So we
will declare a �ield using the static keyword in the Human class, which will have the same value for all
Human instances and that will be initialized only once. And we can go one step further and make sure that
value never changes during the execution of the program by adding the final modi�ier in front of its
declaration as well. This way we created a special type of variable called a constant . The new Human class
is depicted in Listing 4-14:

package com.apress.bgn.four.base;

public class Human {

 static final int LIFESPAN = 100;

 String name;

 int age;

 float height;

}

Listing 4-14 Simple Human Class with a Constant Member

The LIFESPAN variable is also called a class variable, because it is not associated with instances, but
with the class. (And it was set to 100, which is a pretty optimistic value.) This is made obvious by the code in
Listing 4-15:

package com.apress.bgn.four.base;

public class BasicHumanDemo {

 public static void main(String... args) {

 Human alex = new Human();

 alex.name = "Alex";

 alex.age = 40;

 alex.height = 1.91f;

 Human human = new Human();

 System.out.println("Alex’s lifespan = " + alex.LIFESPAN); // prints

100

 System.out.println("human’s lifespan = " + human.LIFESPAN); //

prints 100

 System.out.println("Human lifespan = " + Human.LIFESPAN); // prints

100

 }

}

Listing 4-15 Code Sample Testing a Constant

Encapsulating Data
The class we de�ined makes no use of access modi�iers on the �ields, and this is not acceptable. Java is known
as an object-oriented programming language, and thus code written in Java must respect the principles of
object-oriented programming (OOP) . Respecting these coding principles ensures that the written code is
of good quality and totally aligns with the fundamental Java style. One of the OOP principles is
encapsulation . The encapsulation principle refers to hiding of data implementation by restricting access to
it using special methods called accessors (getters) and mutators (setters).

Basically, any �ield of a class should have private access, and access to it should be controlled by methods
that can be intercepted, tested, and tracked to see where they were called. Getters and setters are a normal

practice to have when working with objects; most IDEs have a default options to generate them, including
IntelliJ IDEA. Just click right inside the class body and select the Generate option to see all possibilities and
select Getters and Setters to generate the methods for you. The menu is depicted in Figure 4-4.

Figure 4-4 IntelliJ IDEA code generation menu: Generate ➤ Getter and Setter submenu

After making the �ields private and generating the getters and setter, the Human class now looks like the
one depicted in Listing 4-16.

package com.apress.bgn.four.base;

public class Human {

 public static final int LIFESPAN = 100;

 private String name;

 private int age;

 private float height;

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 public int getAge() {

 return age;

 }

 public void setAge(int age) {

 this.age = age;

 }

 public float getHeight() {

 return height;

 }

 public void setHeight(float height) {

 this.height = height;

 }

}

Listing 4-16 Simple Human Class with Getters and Setters

After looking at the previous code listing, you may be wondering what the purpose of the this keyword
is. As the keyword hints, it is a reference to the current object. So this.name is actually the value of the
�ield name of the current object, also referred to as an instance variable. Inside the class body, this is used to
access �ields for the current objects when there are parameters in methods that have the same name. And as
you can see, the setters and getters that IntelliJ IDEA generates have parameters named exactly as the
�ields.

Getters are the simplest methods that are declared without any parameter, and return the value of the
�ield they are associated with and the coding convention for their names to be made of the get pre�ix and
the name of the �ield they access, with its �irst letter uppercased.

Setters are methods that return nothing and declare as a parameter a variable with the same type that
needs to be associated to the �ield. Their names are made of the set pre�ix and the name of the �ield they
access, with its �irst letter uppercased. When setters are generated by an editor, the parameter name
matches the instance variable name, and the this keyword is needed to discern between the two in the
context of the setter’s body.

Figure 4-5 depicts the setter and getter for the name �ield.

Figure 4-5 Setter and getter methods used for the name �ield

This means that when creating a Human instance, we have to use the setters to set the �ield values and
the getters when accessing them. Therefore our class BasicHumanDemo changes to the one depicted in
Listing 4-17.

package com.apress.bgn.four.base;

public class BasicHumanDemo {

 public static void main(String... args) {

 Human alex = new Human();

 alex.setName("Alex");

 alex.setAge(40);

 alex.setHeight(1.91f);

 System.out.println("name: " + alex.getName());

 System.out.println("age: " + alex.getAge());

 System.out.println("height: " + alex.getHeight());

 }

}

Listing 4-17 BasicHumanDemo Class Using Human Instance with Getters and Setters

Most Java frameworks look for getters and setters within classes to initialize or read the values of an
object’s �ields. Setters and getters are considered by most developers as boilerplate code (or just
boilerplate); sections of code that are repeated in multiple places with little to no variation. That is why the
Lombok1 library was born—to generate them at runtime, so developers don’t have to pollute their code with
them. The Kotlin language removed them altogether.

Java did something similar in version 14, when records were introduced. Records will be covered a little
later in this chapter.

Methods
Since getters and setters are methods , it is time to start the discussion about methods too. A method is a
block of code usually characterized by returned type, name, and parameters (when needed) that describes
an action done by or on the object that makes use of the values of its �ields and/or arguments provided. An
abstract template of a Java method is depicted in Listing 4-18.

[accessor] [returned type] [name] (type1 param1, type2 param2, ...) {

// code

[[maybe] return val]

}

Listing 4-18 Method Declaration Template

Following it, let’s create a method for the class Human that computes and prints how much time a human
still has to live, by making use of his age and the LIFESPAN constant . Because the method does not
return anything, the return type used will be void. void is a special type that tells the compiler that the
method does not return anything, thus no return statement is present in the method body. The code of this
method is depicted in Listing 4-19.

package com.apress.bgn.four.base;

public class Human {

 static final int LIFESPAN = 100;

 private String name;

 private int age;

 private float height;

 /**

 * compute and prints time to live

 */

 public void computeAndPrintTtl(){

 int ttl = LIFESPAN - this.age;

 System.out.println("Time to live: " + ttl);

 }

 // some code omitted

}

Listing 4-19 Human#computeAndPrintTtl Method with No Return Value

 There is a coding convention regarding the naming of constants in Java that recommends using only
uppercase letters, underscore (replaces space characters in a composed name), and numbers to make up
their name.

The preceding method de�inition does not declare any parameters, so it can be called on a Human
instance, as depicted in Listing 4-20.

package com.apress.bgn.four.base;

public class BasicHumanDemo {

 public static void main(String... args) {

 Human alex = new Human();

 alex.setName("Alex");

 alex.setAge(40);

 alex.setHeight(1.91f);

 alex.computeAndPrintTtl();

 }

 // some code omitted

}

Listing 4-20 The computeAndPrintTtl() Method Call

When the code in Listing 4-20 is executed, “Time to live: 60” is printed in the console.
The previous method can be modi�ied to return the time to live value instead of printing it. The method

must be modi�ied to declare the type of the value being returned, and in this case the type is int, the same
type of the value being computed inside the body of the method. The implementation is depicted in Listing
4-21.

package com.apress.bgn.four.base;

public class Human {

 static final int LIFESPAN = 100;

 private String name;

 private int age;

 private float height;

 /**

 * @return time to live

 */

 public int getTimeToLive(){

 int ttl = LIFESPAN - this.age;

 return ttl;

 }

 // some code omitted

}

Listing 4-21 The getTimeToLive() Method with Return Value

Calling the method will do nothing in this case, so we have to modify the code to save the returned value
and print it, as depicted in Listing 4-22.

package com.apress.bgn.four.base;

public class BasicHumanDemo {

 public static void main(String... args) {

 Human alex = new Human();

 alex.setName("Alex");

 alex.setAge(40);

 alex.setHeight(1.91f);

 int timeToLive = alex.getTimeToLive();

 System.out.println("Time to live: " + timeToLive);

 }

 // some code omitted

}

Listing 4-22 Using the getTimeToLive() Method

Both methods introduced here declare no parameters, so they are called without providing any
arguments. We won’t cover methods with parameters, as the setters are more than obvious. Let’s skip ahead.

Constructors
Now we’ve done it, we can no longer use alex.name in other classes without the compiler complaining
about about not being able to access that property. Also, in calling all those setters it is quite annoying just to
set those properties, so something should be done about that. Remember the implicit constructor?
Constructors can be declared explicitly by developers too, and a class can have more than one. Constructors
can be declared with parameters for each of the �ields of interest. Listing 4-23 depicts a constructor for the
Human class that initializes the class �ields with the values of its parameters.

package com.apress.bgn.four.base;

public class Human {

 static final int LIFESPAN = 100;

 private String name;

 private int age;

 private float height;

 /**

 * Constructs a Human instance initialized with the given parameters.

 * @param name - the name for the Human instance

 * @param age - the age for the Human instance

 * @param height - the height for the Human instance

 */

 public Human(String name, int age, float height) {

 this.name = name;

 this.age = age;

 this.height = height;

 }

 // some code omitted

}

Listing 4-23 Human class with Explicit Constructor

A constructor does not require a return statement, even if the result of calling a constructor is the
creation of an object. Constructors are different from methods in that way. By declaring an explicit
constructor, the default constructor is no longer generated. So creating a Human instance by calling the
default constructor, as depicted in earlier code listings, does not work anymore. The code no longer
compiles, because the default constructor is no longer generated. To create a Human instance , we now have
to call the new constructor and provide proper arguments in place of the parameters, having the correct
types and respecting their declaration order.

Human human = new Human("John", 40, 1.91f); // this works

Human human = new Human(); // this no longer works

But what if we do not want to be forced to set all �ields using this constructor? It’s simple: we de�ine
another with only the parameters we are interested in. Let’s de�ine a constructor that only sets the name
and the age for a Human instance, as depicted in Listing 4-24.

package com.apress.bgn.four.base;

public class Human {

 static final int LIFESPAN = 100;

 private String name;

 private int age;

 private float height;

 public Human(String name, int age) {

 this.name = name;

 this.age = age;

 }

 public Human(String name, int age, float height) {

 this.name = name;

 this.age = age;

 this.height = height;

 }

 // some code omitted

}

Listing 4-24 Human Class with Explicit Constructors

Here is where we stumble upon another OOP principle called polymorphism . The term is Greek and
translates to one name, many forms. Polymorphism applies to code design having multiple methods all with
the same name, but slightly different signatures and functionality. It applies to constructors too. There are
two basic types of polymorphism: overriding , also called run-time polymorphism, which will be covered a
little bit later when the inheritance principle will be covered; and overloading, which is referred to as
compile-time polymorphism.

The second type of polymorphism applies to the previous constructors, because we have two of them:
one with a different set of parameters, that looks like it is an extension of the simpler one.

The second thing this should be noticeable in the most recent listing is that the two constructors contain
two identical code lines. There is a common sense programming principle named DRY,2 which is short for
Don’t Repeat Yourself! Obviously, the code in the most recent listing does not abide by it, so let’s �ix that by
using the this keyword introduced previously in a new interesting way, as in Listing 4-25.

package com.apress.bgn.four.base;

public class Human {

 static final int LIFESPAN = 100;

 private String name;

 private int age;

 private float height;

 public Human(String name, int age) {

 this.name = name;

 this.age = age;

 }

 public Human(String name, int age, float height) {

 this(name,age);

 this.height = height;

 }

 // some code omitted

}

Listing 4-25 Human Class with Better Explicit Constructors

The constructors can call each other by using this(...). This is pretty useful to avoid writing the
same code twice, thus promoting code reusability.

So now both constructors provide the means to create Human instances. If we use the one that does not
set the height, the height �ield will be implicitly initialized with the default value for type �loat (0.0).

Now our class is quite basic, and we could even say that it models a Human in a quite abstract way. If we
were to try to model humans with certain skill sets or abilities, we have to create new classes. Let’s say we
want to model musicians and actors. This means we need to create two new classes. The Musician class is
depicted in Listing 4-26; getters and setter for the �ields are skipped.

package com.apress.bgn.four.classes;

public class Musician {

 static final int LIFESPAN = 100;

 private String name;

 private int age;

 private float height;

 private String musicSchool;

 private String genre;

 private List<String> songs;

// other code omitted

}

Listing 4-26 Musician Class

The Actor class is depicted in Listing 4-27; getters and setter for the �ields are skipped.

package com.apress.bgn.four.classes;

public class Actor {

 static final int LIFESPAN = 100;

 private String name;

 private int age;

 private float height;

 private String actingSchool;

 private List<String> films;

 // other code omitted

}

Listing 4-27 Actor Class

As you can see, there are more than a few common elements between the two classes. We’ve mentioned
before that one of the clean coding principles requires developers to avoid code duplication. This can be
done by designing the classes by following two more OOP principles: inheritance (which was mentioned
brie�ly) and abstraction.

Abstraction and Inheritance
Abstraction is an OOP principle that manages complexity. Abstraction is used to decompose complex
implementations and de�ine core parts that can be reused. In our case, common �ields of classes Musician
and Actor can be grouped in the Human class that we de�ined earlier in the chapter. The Human class can
be viewed as an abstraction, because any human in this world is more than their name, age, and height.
There is no need to ever create Human instances, because any human will be represented by something else,
such as passion, purpose, or skill. A class that does not need to be instantiated, but just groups together

�ields and methods for other classes to inherit or provide a concrete implementation for, is modelled in Java
by an abstract class. Thus, the Human class is modi�ied to make it abstract. Since we are abstracting this
class, we’ll make the LIFESPAN constant public to make it accessible from anywhere and make the
getTimeToLive() method abstract to delegate its implementation to extending classes. The class
contents are shown in Listing 4-28.

package com.apress.bgn.four.classes;

public abstract class Human {

 public static final int LIFESPAN = 100;

 protected String name;

 protected int age;

 protected float height;

 public Human(String name, int age) {

 this.name = name;

 this.age = age;

 }

 public Human(String name, int age, float height) {

 this(name, age);

 this.height = height;

 }

 /**

 * @return time to live

 */

 public abstract int getTimeToLive();

 // getters and setters omitted

}

Listing 4-28 Human Abstract Class

An abstract method is a method missing the body, like the getTimeToLive() method declared in the
previous code listing. This means that within the Human class there is no concrete implementation for this
method, only a skeleton, a template. A concrete implementation for this method must be provided by the
extending classes.

Oh, but wait, we kept the constructors! Why did we do that, if we are not allowed to use them anymore?
And we aren’t, because here is what IntelliJ IDEA does with the BasicHumanDemo class now in Figure 4-6:

Figure 4-6 Java compiler error when trying to instantiate an abstract class

Yes, that is a compile error. Constructors can be kept, as they can help further in abstracting behavior.
Classes Musician and Actor must be rewritten to extend the Human class. This is done by using the
extends keyword when declaring the class and specifying the class to be extended, also called parent
class or superclass. The resulting class is called a subclass.

 When extending a class, the subclass inherits all the �ields and concrete methods declared in the
superclass. (Access to them is de�ined by access modi�iers covered in Chapter 3.) The exception are
abstract methods, for which the subclass is forced to provide a concrete implementation.

 The subclass must declare its own constructors that make use the ones declared in the superclass. The
constructors from the superclass are called using the keyword super. The same goes for methods and
�ields, unless they have an access modi�ier that prohibits access.

Can you guess which one it is? It is private. A subclass cannot access private members of the
superclass. If you did not know the answer, you might want to review Chapter 3.

Listing 4-29 depicts a version of the Musician class that is written by making use of abstraction and
inheritance.

package com.apress.bgn.four.classes;

public class Musician extends Human {

 private String musicSchool;

 private String genre;

 private List<String> songs;

 public Musician(String name, int age, float height,

 String musicSchool, String genre) {

 super(name, age, height);

 this.musicSchool = musicSchool;

 this.genre = genre;

 }

 public int getTimeToLive() {

 return (LIFESPAN - getAge()) / 2;

 }

 // getters and setters omitted

}

Listing 4-29 Musician Class That Extends Human

The songs �ield was not used as a parameter in the constructor for simplicity reasons here.
As you can see, the Musician constructor calls the constructor in the superclass to set the properties

de�ined there. Also, notice the full implementation provided for the getTimeToLive() method . The
Actor class is rewritten in a similar manner. There is a proposal implementation in the sources for the
book, but try to write your own before looking in the classes package. In Figure 4-7 the Human class
hierarchy is depicted, as generated by IntelliJ IDEA. Methods are omitted to keep the image simple.

Figure 4-7 UML diagram generated by IntelliJ IDEA

The UML diagram clearly shows the members of each class, and the arrows point to the superclass. UML
diagrams are useful tools in designing component hierarchies and de�ining logic of applications. If you want
to read more about them, and the many types of UML diagrams that there are, you can do so here:
https://www.uml-diagrams.org.

After covering so much about classes and how to create objects, we need to cover other Java important
components that can be used to create even more detailed objects. Our Human class is missing quite a few
attributes, such as gender, for example. A �ield that models the gender of a person can only have values from
a �ixed set of values. It used to be two, but because we are living in a brave new world that is quite fond of
political correctness, we cannot limit the set of values for genders to two, so we will introduce a third, called
UNSPECIFIED, which is to be used as a replacement for whatever a person identi�ies as. This means that we
have to introduce a new class to represent gender that is only limited to be instantiated thrice. This would
be quite tricky to do with a typical class, and this is the reason why enums were introduced in Java version
1.5.

Enums
The enum type is a special class type. It is used to de�ine a special type of class that can only be instantiated a
�ixed number of times. An enum declaration groups together all instances of that enum. All of them are
constants. The Gender enum can be de�ined as shown in Listing 4-30.

package com.apress.bgn.four.classes;

public enum Gender {

 FEMALE,

 MALE,

 UNSPECIFIED

https://www.uml-diagrams.org/

}

Listing 4-30 Gender Enum

An enum cannot be instantiated externally. An enum is by default final, thus it cannot be extended.
Remember how by default every class in Java implicitly extends class Object? Every enum in Java implicitly
extends class java.lang.Enum<E> and in doing so, every enum instance inherits special methods that
are useful when writing code using enums.

Being a special type of class, an enum can have �ields and a constructor, that can only be private, as
enum instances cannot be created externally. The private modi�ier is not needed explicitly, as the compiler
knows what to do. Listing 4-31 shows the Gender enum implemented by adding an integer �ield that will be
the numerical representation of each gender and a String �ield that will be the text representation. To
access the enum properties, getters are needed.

package com.apress.bgn.four.classes;

public enum Gender {

 FEMALE(1, "f"),

 MALE(2, "m") ,

 UNSPECIFIED(3, "u");

 private int repr;

 private String descr;

 Gender(int repr, String descr) {

 this.repr = repr;

 this.descr = descr;

 }

 public int getRepr() {

 return repr;

 }

 public String getDescr() {

 return descr;

 }

}

Listing 4-31 A More Complex Gender Enum

 But wait, what would stop us from declaring setters as well and modifying the �ield values? Well,
nothing. If that is what you need to do you can do it. But this is not a good practice.

Enum instances should be constant. So a correct enum design should not declare setters, and make
sure the values of the �ields will never be changed by declaring them final. When we do so, the only way
the �ields are initialized is by calling the constructor, and since the constructor cannot be called externally,
the integrity of our data is ensured. An example of a good enum design is depicted in Listing 4-32.

package com.apress.bgn.four.classes;

public enum Gender {

 FEMALE(1, "f"),

 MALE(2, "m") ,

 UNSPECIFIED(3, "u");

 private final int repr;

 private final String descr;

 Gender(int repr, String descr) {

 this.repr = repr;

 this.descr = descr;

 }

 public int getRepr() {

 return repr;

 }

 public String getDescr() {

 return descr;

 }

}

Listing 4-32 Proper Gender Enum

Methods can be added to enums, and each instance can override them. So if we add a method called
comment() to the Gender enum , every instance will inherit it. But the instance can override it, as
depicted in Listing 4-33.

package com.apress.bgn.four.classes;

public enum Gender {

 FEMALE(1, "f"),

 MALE(2, "m") ,

 UNSPECIFIED(3, "u"){

 @Override

 public String comment() {

 return "to be decided later: " + getRepr() + ", " + getDescr();

 }

 };

 private final int repr;

 private final String descr;

 Gender(int repr, String descr) {

 this.repr = repr;

 this.descr = descr;

 }

 public int getRepr() {

 return repr;

 }

 public String getDescr() {

 return descr;

 }

 public String comment() {

 return repr + ": " + descr;

 }

}

Listing 4-33 Proper Gender Enum with Extra Method

 So how is this possible? How can an instance override a method of its class type? Well, it doesn’t. The
UNSPECIFIED enum actually extends the Gender class and overrides the comment() method.

This can be easily proven by iterating over the enum values and printing the result returned by the
getClass() method , inherited from the Object class that returns the runtime type of the object. To get
all the instances of an enum, the class java.lang.Enum<E>, which every enum extends implicitly,
provides a method named values().

Listing 4-34 shows the code that does that and its output too.

package com.apress.bgn.four.classes;

public class BasicHumanDemo {

 public static void main(String... args) {

 for (Gender value : Gender.values()) {

 System.out.println(value.getClass());

 }

 }

}

// Output expected in the console

// class com.apress.bgn.four.classes.Gender

// class com.apress.bgn.four.classes.Gender

// class com.apress.bgn.four.classes.Gender$1

Listing 4-34 Code Sample Listing Enum Items Classes

Notice the value printed for the UNSPECIFIED element . The Gender$1 notation means that the
compiler, created an inner class by extending the original enum class and overriding the comment() method
with the one provided in the declaration of the UNSPECIFIED element.

We’re going to be playing with enums in future examples as well. Just remember that whenever you need
to limit the implementation of a class to a �ixed number of instances, or group related constants together,
enums are the tools for you. Because we have introduced enums, our Human class can now have a �ield of
type Gender, as depicted in Listing 4-35.

package com.apress.bgn.four.classes;

public abstract class Human {

 public static final int LIFESPAN = 100;

 protected String name;

 protected int age;

 protected float height;

 private Gender gender;

 public Human(String name, int age, Gender gender) {

 this.name = name;

 this.age = age;

 this.gender = gender;

 }

 public Human(String name, int age, float height, Gender gender) {

 this(name, age, gender);

 this.height = height;

 }

 // other code omitted

 public Gender getGender() {

 return gender;

 }

 public void setGender(Gender gender) {

 this.gender = gender;

 }

}

Listing 4-35 Human Class with a Gender Field

In the previous sections interfaces were mentioned as one of the Java components used to create
objects. It is high time we expand the subject.

Interfaces

 One of the most common Java interview questions is: What is the difference between an interface and
an abstract class? This section will provide you the most detailed answer to that question.

An interface is not a class, but it does help create classes. An interface is fully abstract; it has no �ields,
only abstract method de�initions. I also like to call them skeletons. When a class is declared to implement an
interface, unless the class is abstract, it must provide concrete implementations for all skeleton methods.

 The name skeleton method is quite important in Java 8+ versions, because from this version on,
interfaces were enriched so that static, default, and private methods can be part of them.

Skeleton methods inside an interface are implicitly public and abstract, because skeleton methods
must be abstract to force classes to provide implementations and must be public, so classes actually have
access to do so. The only methods with concrete implementation in an interface until Java 8 were static
methods.

In Java 8, default methods in interfaces were introduced, and in Java 9 private methods in interfaces
were introduced.

The interfaces cannot be instantiated; they do not have constructors.
Interfaces that declare no method de�initions are called marker interfaces and have the purpose to mark

classes for speci�ic purposes. The most renown Java marker interface is java.io.Serializable, which
marks objects that can be serialized so that their state can be saved to a binary �ile or another data source
and sent over a network to be deserialized and used. An interface can be declared in its own �ile as a top-
level component, or nested inside another component. There are two types of interfaces: normal interfaces
and annotations .

The difference between abstract classes and interfaces, and when one or the other should be used,
becomes relevant in the context of inheritance.

 Java supports only single inheritance. This means a class can only have one superclass.

Single inheritance might seem a limitation, however, consider the following example. Let’s modify the
previous hierarchy and imagine a class named Performer that should extend classes Musician and Actor. If
you need a real human that can be modelled by this class, think of David Duchovny (he is an actor and
musician).

In Figure 4-8 the class hierarchy mentioned previously is depicted.

Figure 4-8 Diamond class hierarchy

The hierarchy in the previous image introduces something called the diamond problem, and the name is
obviously inspired by the shape formed by the relationships between classes. What is actually wrong with
the design? It should be obvious that if both Musician and Actor extend Human and inherit all members
from it, what will Performer inherit and from where? It obviously cannot inherit members of Human
twice, which would make this class useless and invalid. And how could we discern between methods with
the same signature? So what is the solution in Java? As you probably imagine, considering the focus of this
section: interfaces. (Sort of, most times a combination of interfaces, and a programming concept named
composition is required.)

What has to be done is to turn methods in classes Musician and Actor into method skeletons and
transform those classes into interfaces. The behavior from the Musician will be moved to a class called,
let’s say Guitarist, that will extend the Human class and implement the Musician interface . For the
Actor class, something similar can be done, but we’ll leave that as an exercise for you. Some help is
provided though, by the hierarchy in Figure 4-9.

Figure 4-9 Java hierarchy with interfaces for performer class

So the Musician interface contains only method skeletons mapping what a musician does. It does not
go into detail to model how. The same goes for the Actor interface . In Listing 4-36, you can see the bodies
of the two interfaces.

//Musician.java

package com.apress.bgn.four.interfaces;

import java.util.List;

public interface Musician {

 String getMusicSchool();

 void setMusicSchool(String musicSchool);

 List<String> getSongs();

 void setSongs(List<String> songs);

 String getGenre();

 void setGenre(String genre);

}

//Actor.java

package com.apress.bgn.four.interfaces;

import java.util.List;

public interface Actor {

 String getActingSchool();

 void setActingSchool(String actingSchool);

 List<String> getFilms();

 void setFilms(List<String> films);

 void addFilm(String filmName);

}

Listing 4-36 Musician and Actor interfaces

As you can see, the �ields have been removed because they cannot be part of the interfaces, and all that is
left is the method skeletons. The Performer class is depicted in Listing 4-37.

package com.apress.bgn.four.interfaces;

import com.apress.bgn.four.classes.Gender;

import com.apress.bgn.four.classes.Human;

import java.util.List;

public class Performer extends Human implements Musician, Actor {

 // fields specific to musician

 private String musicSchool;

 private String genre;

 private List<String> songs;

 // fields specific to actor

 private String actingSchool;

 private List<String> films;

 public Performer(String name, int age, float height, Gender gender) {

 super(name, age, height, gender);

 }

 // from Human

 @Override

 public int getTimeToLive() {

 return (LIFESPAN - getAge()) / 2;

 }

 // from Musician

 public String getMusicSchool() {

 return musicSchool;

 }

 public void setMusicSchool(String musicSchool) {

 this.musicSchool = musicSchool;

 }

 // from Actor

 public String getActingSchool() {

 return actingSchool;

 }

 public void setActingSchool(String actingSchool) {

 this.actingSchool = actingSchool;

 }

 // other methods omitted

}

Listing 4-37 Performer Class Implementing Two Interfaces

 What you should take from this example is that using interfaces and multiple inheritance is possible in
Java to some extent, and that classes extend only one class and can implement one or more
interfaces.

Inheritance applies to interfaces too. For example, both Musician and Actor interfaces can extend an
interface named Artist that contains template for behavior common to both. For example, we can
combine the music school and acting school into a generic school and de�ine the setters and getters for it as
method skeletons. The Artist interface is depicted in Listing 4-38 together with Musician.

package com.apress.bgn.four.interfaces;

// Artist.java

public interface Artist {

 String getSchool();

 void setSchool(String school);

}

// Musician.java

import java.util.List;

public interface Musician extends Artist {

 List<String> getSongs();

 void setSongs(List<String> songs);

 String getGenre();

 void setGenre(String genre);

}

Listing 4-38 Artist and Musician Interface s

Hopefully, you understood the idea of multiple inheritance and when it is appropriate to use classes and
when to use interfaces in designing your applications, because it is high time to ful�il the promise made in
the beginning of this section and list the differences between abstract classes and interfaces. You can �ind
them in Table 4-1.

Table 4-1 Differences Between Abstract Classes and Interfaces in Java

Abstract Class Interface

Can have nonabstract methods. Can only have static, abstract, default and private methods.

Single inheritance: a class can only extend one class. Multiple inheritance: a class can implement more than one interface. Also,
an interface can extend one or more interfaces.

Can have �inal, non�inal, static and nonstatic variables. Can only have static and �inal �ields.

Declared with abstract class. Declared with interface.

Can extend another class using keyword extends and implement
interfaces with keyword implements.

Can only extend other interfaces (one or more) using keyword extends.

Can have nonabstract, package-private (default), protected or
private members.

All members are by default abstract and public. (Except default and private
methods starting with Java 9.)

If a class has an abstract method, it must be declared itself
abstract.

(No correspondence).

Default Methods in Interfaces
One problem with interfaces is that if you modify their bodies to add new methods, the code will stop
compiling. To make it compile, you have to add a concrete implementation for the newly added interface
method(s) in every class that implements that interface. This has been a pain for developers for many years.
An interface is a contract, it guarantees how a class will behave. When using third-party libraries in your
project, you do so by designing your code to respect those contracts. When switching to a new version of a
library, if that contract changes, your code will no longer compile.

 This situation is very similar to Apple changing the charging ports for their computers and phones
from a version to another. If you buy a new Mac and try to use your old charger, it won’t �it.

Sure, a solution would be to declare the new methods in a new interface and then creating new classes
that implement both new and old interfaces (this is called composition, because the two interfaces are
composed to represent a single contract). The methods exposed by an interface make up an API (Application
Programming Interface), and when developing applications, the aim is to design them to have stable API.
This rule is described by a programming principle called Open-Closed Principle. This is one of the 5 SOLID
Programming Principles.3 This principle states that you should be able to extend a class without modifying

it. Thus, modifying the interface a class implements requires modifying the class too. Modifying interfaces
tends to lead to breaking this principle.

Aside from interfaces composition mentioned previously, in Java 8 a solution for this was introduced:
default methods. Starting with Java 8, methods with a full implementation can be declared in interfaces as
long as they are declared using the default keyword . Default methods are implicitly public. Their main
purpose is to modify the API to allow new implementations to override them, but without breaking existing
implementations.

Let’s consider the Artist interface . Any artist should be able to create something, right? So they should
have a creative nature. Given the word we are living in, I won’t give names, but some of our artists are
actually products of the industry and are not creative themselves. The realization that we should have a
method that tells us if an artist has a creative nature or not came after we decided our hierarchy depicted in
Figure 4-10.

Figure 4-10 Java hierarchy with more interfaces for performer class

If we add a new abstract method to the Artist interface , the Performer class fails to compile. IntelliJ
IDEA will make it really obvious that our application does not work anymore by showing a lot of things in
red, as depicted in Figure 4-11.

Figure 4-11 Java broken hierarchy because of new method in interface

The compiler errors that we see are caused by our decision to add a new abstract method named
isCreative to the Artist interface, and if you hover with your mouse over the class declaration you can
see why. Listing 4-39 depicts the abstract method breaking the code.

package com.apress.bgn.four.hierarchy;

public interface Artist {

 String getSchool();

 void setSchool(String school);

 boolean isCreative();

}

Listing 4-39 New Abstract Method Added to the Artist Interface

To get rid of the compiling errors we’ll transform the isCreative abstract method into a default
method that returns true, because every artist should be creative. Default methods are by default public, so
they can be called on every object of a type implementing the interface where the method is declared.
Listing 4-40 depicts the body of the default method.

package com.apress.bgn.four.hierarchy;

public interface Artist {

 String getSchool();

 void setSchool(String school);

 default boolean isCreative(){

 return true;

 }

}

Listing 4-40 New default Method Added to the Artist Interface

Now the code should compile again. Default methods are pretty practical, as they allow the modi�ication
of the contract represented by an interface without enforcing modi�ication of existing classes implementing
that interfaces. This will ensure binary compatibility with code written for older versions of that interface.

Classes that implement an interface containing a default method can use the existing default
implementation or provide a new implementation for default methods (can override them). To show this, a
class named MiliVanili is shown in Listing 4-41 that provides a new implementation for the default
method in the Artist interface .

package com.apress.bgn.four.hierarchy;

import java.util.List;

public class MiliVanili implements Artist {

 @Override

 public boolean isCreative() {

 return false; // dooh!

 }

 // other code omitted

}

Listing 4-41 Default Method Being Overriden in Class Implementing the Artist Interface

Interfaces extending other interfaces can be written to do any of the following (for a little more clarity
the extended interface will be referred to as the super-interface):

declare their own abstract methods and default methods
redeclare the default method from the super-interface as an abstract method which forces classes
extending this interface to provide an implementation
rede�ine the default method from the super-interface

declare a default method that provides an implementation for an abstract method from the super-
interface

 Providing code samples for all these scenarios is a little bit too much for an absolute Java beginner
book. If you are interested in what the code looks like and in testing the validity of these af�irmations,
check out the contents of the com.ampress.bgn.four.interfaces.extensions package.

Static Methods and Constants in Interfaces
In Java version 1 interfaces could only contain abstract methods and static constants . Interfaces have
changed a lot since version 1, with the most important changes being the support for default and
private methods.

Constants, or variables that once initialized never change, do not need an implementation, so it makes
sense for developers to be allowed to declare them in an interface’s body, right? You can do the same using
enums, but sometimes you might want to keep related components together. In a previous example a
LIFESPAN constant was declared in the Human class. Since any class implementing Artist will probably
need the LIFESPAN for some calculation or another, we can move this constant in the Artist interface and
use it in any class, as depicted in Listing 4-42.

// Artist.java

package com.apress.bgn.four.hierarchy;

public interface Artist {

 public static final int LIFESPAN = 100;

 // other code omitted

}

// Performer.java

package com.apress.bgn.four.hierarchy;

public class Performer extends Human implements Musician, Actor {

 @Override

 public int getTimeToLive() {

 return (LIFESPAN - getAge()) / 2;

 }

 // other code omitted

}

Listing 4-42 The Constant LIFESPAN in the Artist Interface

When declaring constants in interfaces, the three accessors public static final are redundant
because they are implied. The explanation for each is quite simple:

Interfaces cannot have mutable �ields, so by default they have to be final.
Since interfaces cannot be instantiated; they cannot have �ields that will become properties on instances,
so they have to be static.
Since anything in an interface body must be accessible to implementing classes, they have to be public.

As for static methods in interfaces, they are usually utility methods that are speci�ic to certain operations
within the hierarchy the interface is part of. Let’s add a static method that checks to see if the name provided
as an argument is capitalized, and capitalizes it if it isn’t. The code is depicted in Listing 4-43, and the
method capitalize is declared in the Artist interface and used in the Performer class.

// Artist.java

package com.apress.bgn.four.hierarchy;

public interface Artist {

 public static String capitalize(String name){

 Character c = name.charAt(0);

 if(Character.isLowerCase(c)) {

 Character upperC = Character.toUpperCase(c);

 name.replace(c, upperC);

 }

 return name;

 }

 // other code omitted

}

// Performer.java

package com.apress.bgn.four.hierarchy;

public class Performer extends Human implements Musician, Actor {

 public String getCapitalizedName() {

 return Artist.capitalize(this.name);

 }

 // other code omitted

}

Listing 4-43 Public Static Method in Interface

In Java 8 any method with a body that was not declared as default had to be declared public and static,
because of reasons mentioned previously. If default or static methods share a lot of code, then a
default or static method can group that code and have the others call it, right? The only problem appears
when there is a need for that code to be private. That was not possible in Java 8, because everything in the
body of an interface was public by default, but it became possible in Java 9.

Private Methods in Interfaces
Starting with Java 9 , support for private and private static methods in interfaces was introduced.
This means that the action performed by the default isCreative() method can be modi�ied to also log an
explanation for the returned value, by calling a private method, as shown in Listing 4-44.

package com.apress.bgn.four.hierarchy;

public interface Artist {

 String getSchool();

 void setSchool(String school);

 default boolean isCreative(){

 explain();

 return true;

 }

 private void explain(){

 System.out.println("A true artist has a creative nature.");

 }

}

Listing 4-44 New private Method Added to the Artist Interface

The same can be done for static methods as well, if there is a piece of code that is worth making private,
just declare it in a private static method.

When doing development on a concrete project, you will �ind yourself using classes, interfaces, enums,
and others. It is up to you how you design and organize your code. Just make sure to avoid repetition, and
keep it clean, uncoupled, and testable .

Records
The Java record is a special type of class with a clear syntax for de�ining immutable data-only classes. The
Java compiler takes the code of your record and generates constructors, getters, and other specialized
methods such as toString(), hashCode(), and equals().

 The hashCode() and equals() specialized methods are de�ined in the Object class and thus they
are implicitly de�ined in every Java class. They are very important in establishing the identity of an
instance and will be covered in Chapter 5, the collections section.

Java records were introduced in JDK 14 as a preview feature, long after similar type of constructs were
introduced in other programming languages as C#, Scala, or Kotlin. Java developers avoided the hassle of
writing a lot of boilerplate code by using libraries such as Lombok. Lombok was already mentioned in the
Encapsulating Data section of this chapter, where some disadvantages of using it were listed too.

Lombok requires annotating classes with special annotations that tell its annotation processor to
generate the desired bytecode at compile time. It works for generation of all the components now supported
using Java records.

Listing 4-45 shows how the Human class would be written using Lombok.

package com.apress.bgn.four.lombok;

import com.apress.bgn.four.classes.Gender;

import lombok.*;

@NoArgsConstructor

@AllArgsConstructor

@RequiredArgsConstructor

@ToString

@EqualsAndHashCode

public class Human {

 @Getter @Setter

 @NonNull

 private String name;

 @Getter @Setter

 @NonNull

 private int age;

 @Getter @Setter

 private float height;

 @Getter @Setter

 private Gender gender;

}

Listing 4-45 Human Class: the Lombok Version

Another issue with Lombok is that it becomes unpredictable in a Java project using modules.
Manipulating code at compile time to inject extra functionalities is a sensitive operation that requires access
to JDK internals that might not be exported for security reasons. For example, at the time this section was
written, compiling the project using Lombok doesn’t work because Lombok requires access to class

com.sun.tools.javac.processing.JavacProcessingEnvironment from module
jdk.compiler that doesn’t export the com.sun.tools.javac.processing package.

Without Lombok, the class in Listing 4-45, would have a lot more lines, because all the annotations in
code snippet essentially replace methods that the developer should write otherwise:

@NoArgsConstructor tells Lombok to generate the bytecode for a default no-arguments constructor
for the Human class.
@AllArgsConstructor tells Lombok to generate the bytecode for a constructor requiring an argument
for each �ield of the Human class.
@RequiredArgsConstructor tells Lombok to generate the bytecode for a constructor requiring an
argument for all required �ields (the ones annotated with @NotNull).
@ToString tells Lombok to generate the bytecode for the toString() method. The implementation of
this method is decided by Lombok based on all the �ields in the class.
@EqualsAndHashCode tells Lombok to generate the bytecode for the equals() and hashCode()
methods. The implementation of these methods is decided by Lombok based on all the �ields in the class.

With the introduction of records , Lombok is no longer needed as long as the project is being compiled
and run using on JDK 15. And you don’t need your instances to be immutable. The resulted classes are
immutable data-only classes, so there are no setters, but in the brave new world of reactivity, having
immutable records is a must anyway. The record implementation of the Human class is shown in Listing 4-
46 together with the code necessary to instantiate a Human.

// Human.java

package com.apress.bgn.four.records;

import com.apress.bgn.four.classes.Gender;

public record Human(String name, int age, float height, Gender gender) { }

// RecordDemo.java

package com.apress.bgn.four.records;

import com.apress.bgn.four.classes.Gender;

public class RecordDemo {

 public static void main(String... args) {

 Human john = new Human("John Mayer", 44, 1.9f, Gender.MALE);

 System.out.println("John as string: " + john);

 System.out.println("John's hashCode: " + john.hashCode());

 System.out.println("John's name: " + john.name());

 }

}

Listing 4-46 Simple Human Record and Class Where Used

As you can see , records can be instantiated in the same way classes are by calling a constructor using the
new keyword. After all, they are just another type of classes. Also, since there is no need for setters, because
the objects are immutable, getters don’t make much sense either. So to access the property values, methods
with the same name as the �ield are generated that return the �ield value.

This can be proven by viewing the bytecode in the generated Human.class �ile using IntelliJ IDEA. Just
look for this �ile in chapter04/target/classes directory and then select it, and from the menu select
View ➤ Show Bytecode. A window should pop-up with contents pretty similar to the ones shown in Figure
4-12.

Figure 4-12 Bytecode of the Human record

From the bytecode we can �igure out yet another important thing about records: the class being shown in
the bytecode is final, thus records cannot be extended. Also, all record classes implicitly extend class
java.lang.Record.

Creation of subrecords is not possible.
Running the main(..) method in the RecordDemo class yields the following results:

John as string: Human[name=John Mayer, age=44, height=1.9, gender=MALE]

John's hashCode: -1637990649

John's name: John Mayer

The toString() implementation of a record is decent enough. The values of the properties of the
john instance can be read and understood easily.

Records can be customized. Nothing stops you from providing a custom implementation for the
toString(), equals(),hashCode() methods and providing various constructors in the record body,
in the same way you would do it for a class. The only catch is the constructor must call the default
constructor of the record using the this keyword . In Listing 4-47 you can see a constructor being added,
which only requires name and age.

package com.apress.bgn.four.records;

public record Human(String name, int age, Float height, Gender gender) {

 public Human(String name, int age) {

 this(name, age, null, null);

 }

}

Listing 4-47 Simple Human Record with an Additional Constructor

Since the default constructor and other methods generated for a record rely on the arguments of the
record, no extra �ields can be declared in a record’s body. However, static variables and methods are
supported. Figure 4-13 depicts a record with an extra constant and a �ield declared in its body, and the
editor doesn’t like the latter .

Figure 4-13 Record with a constant and �ield

Records are pretty practical when data immutability is a requirement, which is … most of the time (e.g.,
DTOs or data transfer objects used to transfer data between software application subsystems). It can be
done without records, but it requires a lot of effort from the developer. This is effort that old-school
developers like me were doing whenever necessary, but you youngsters have no idea how easy you have it
nowadays!

Sealed Classes
Sealed classes were a preview feature in JDK 15 and kept being a preview in JDK 16 as well. At the time this
chapter was written, the list of Java 17 features is still pretty small and sealed classes are not mentioned. But
the hope is that they will become an of�icial feature in Java 17, so they merit a mention in this book.

A common problem developers have is choosing a scope modi�ier for their classes and interfaces.
Security is always a concern and for some projects when classes need to be extended, making them public or
protected is a risk. This is where the sealed modi�ier and its entire family should come in handy. It allows
to seal a class to prevent it from being extended, except for a few subclasses declared using the permits
keyword. Sure, the superclass seems to be doomed to be updated many times when new subclasses are
added to the project, but it is an acceptable trade-off to have a better secured application. Taking this into
consideration, let’s seal a version of our Human class and permit only class Performer to extend it. Listing
4-48 depicts the two classes.

// Human.java

package com.apress.bgn.four.sealed;

import com.apress.bgn.four.classes.Gender;

// Human.java

public sealed class Human

 permits Performer {

 protected String name;

 protected int age;

 protected float height;

 // other code omitted

}

// Performer.java

package com.apress.bgn.four.sealed;

import com.apress.bgn.four.classes.Gender;

public final class Performer extends Human {

 // other code omitted

}

Listing 4-48 Sealed Class and Allowed Subclass

If the extending classes are declared in the same source �ile, there is no need to list them after the
permits keyword . And if there are no extending classes outside the �ile, the permits keyword can be
omitted altogether.

Classes allowed to extend sealed classes should be sealed or �inal themselves. If we need one of those
classes to allow being extended by unknown classes, the non-sealed modi�ier allows that. Listing 4-49
shows the class Engineer that is declared non-sealed; this class must be added to the list in the
permits directive from the Human class .

package com.apress.bgn.four.sealed;

import com.apress.bgn.four.classes.Gender;

public non-sealed class Engineer extends Human {

 public Engineer(String name, int age, Gender gender) {

 super(name, age, gender);

 }

 public Engineer(String name, int age, float height, Gender gender) {

 super(name, age, height, gender);

 }

}

Listing 4-49 Sealed Class and Allowed Subclass

The sealed modi�ier can be applied to interfaces as well. The permits keyword speci�ies the classes
that are permitted to implement the sealed interface.

 You would expect the permits keyword to also support interfaces that extend the sealed interface,
but in the current version of JDK it doesn’t. (You can try it if you want.)

The same rule applies for sealed interfaces as well: classes implementing a sealed interface are expected
to be sealed, non-sealed, or �inal.

Listing 4-50 shows the sealed Mammal interface, which is implemented by the sealed Human class.

package com.apress.bgn.four.sealed;

public sealed interface Mammal permits Human {

}

public sealed class Human

 implements Mammal

 permits Performer, Engineer {

 // rest of the code ommitted

}

Listing 4-50 sealed Mammal Interface and the Sealed Human Class

A limitation of sealed classes and interfaces is that any subclasses and implementing classes need to be
in the same module.

Also, in case it wasn’t obvious, any classes present after the permits keyword must extend the sealed
class/implement the sealed interface. If a class is speci�ied after the permits keyword and does not extend
the sealed class/implement, the sealed interface the compiler won’t like it.

Sealed classes are a good for records, since records are by default �inal.

Hidden Classes
Hidden classes are an interesting feature for developers working on developing frameworks such as
Hibernate or Spring. It allows them to create classes that cannot be used directly by the bytecode of other
classes, since they are destined to only be used internally by the framework. Internal classes should be
declared with the hidden modi�ier , and they should not be discoverable. They could be generated
dynamically by the framework, have a short lifespan, and be discarded when no longer needed, which will
lead to improve performance of applications running on a JVM.

 At the time this chapter was written, hidden classes are more a concept than a reality.

Annotation Types
An annotation is de�ined similarly to an interface; the difference is that the interface keyword is preceded
by the at sign (@). Annotation types are a form of interfaces, and most times are used as markers (look at
the previous Lombok example). For example, you’ve probably noticed the @Override annotation . This
annotation is placed on methods generated automatically by intelligent IDEs when classes extend classes or
implement interfaces. Its declaration in the JDK is depicted in the code snippet in Listing 4-51:

package java.lang;

import java.lang.annotation.*;

/**

 * documentation omitted

 */

@Target(ElementType.METHOD)

@Retention(RetentionPolicy.SOURCE)

public @interface Override { }

Listing 4-51 The JDK @Override Declaration

Annotations that do not declare any property are called marker or informative annotations. They
are needed only to inform other classes in the application, or developers of the purpose of the components
they are placed on. They are not mandatory, and the code will compile without them.

In Java 8, an annotation named @FunctionalInterface was introduced. This annotation was placed
on to all Java interfaces containing exactly one abstract method, and that can be used in lambda
expressions. Aside from the single abstract method, an interface can contain constants and other static
members .

Lambda Expressions
Lambda expressions were also introduced in Java 8, and they represent a compact and practical way of
writing code that was borrowed from languages like Groovy and Ruby. Listing 4-52 depicts the
@FunctionalInterface declaration.

package java.lang;

import java.lang.annotation.*;

/**

 * documentation omitted

 */

@Documented

@Retention(RetentionPolicy.RUNTIME)

@Target(ElementType.TYPE)

public @interface FunctionalInterface {}

Listing 4-52 The JDK @FunctionalInterface Declaration

Functional Interfaces are interfaces that declare a single abstract method. Because of this, the
implementation of that method can be provided on the spot without the need to create a class to de�ine a
concrete implementation. Let’s imagine the following scenario: we create an interface named Operation
that contains a single method. We can provide an implementation for this interface by creating a class
named Addition, or we can do it on the spot using a lambda expression. Listing 4-53 depicts the
Operation interface, the Addition class, and a class named OperationDemo, showing the on-the-spot
implementation being declared and used in the main(..) method.

package com.apress.bgn.four.lambda;

@FunctionalInterface

interface Operation {

 int execute(int a, int b);

}

class Addition implements Operation {

 @Override

 public int execute(int a, int b) {

 return a + b;

 }

}

public class OperationDemo {

 public static void main(String... args) {

 // using the Addition class

 Addition addition = new Addition();

 int result = addition.execute(2,5);

 System.out.println("Result is " + result);

 // implementation on the spot using a Lambda Expression

 Operation addition2 = (a, b) -> a + b;

 int result2 = addition2.execute(2, 5);

 System.out.println("Lambda Result is " + result2);

 }

}

Listing 4-53 Explicit Interface Implementation Compared to Lambda Expression

By using a lambda expression the class Addition is no longer needed, which leads to less and more
readable code. Lambda expressions can be used for a lot of things, and we’ll cover them more later
throughout the book whenever code can be written in a more practical way using them.

Exceptions
Exceptions are special Java classes that are used to intercept special unexpected situations during the
execution of a program, so that the developer can implement the proper course of action. These classes are

organized in a hierarchy that in depicted in Figure 4-14. Throwable is the root class of the hierarchy of
classes used to represent unexpected situations in a Java application.

Figure 4-14 Java exception hierarchy

Exceptional situations in a Java Application can happen for a myriad of reasons:

human error when writing the code
hardware reasons (trying to read a �ile from a corrupted data disk)
missing resources (trying to read a �ile that does not exist)
and many more.

 Sloppy developers, when in doubt, tend to write code that always catches a Throwable. You should
obviously try to avoid that, as class Error is used to notify the developer that a situation the system
cannot recover from has happened, and is a subclass of Throwable.

Let’s start with a simple example. In Listing 4-54 we de�ine a method that calls itself (its technical name
is recursive), but we’ll design it badly, to call itself forever and cause the JVM to run out of memory.

package com.apress.bgn.four.exceptions;

/**

 * Created by iuliana.cosmina on 29/03/2021

 */

public class ExceptionsDemo {

 // bad method

 static int rec(int i){

 return rec(i*i);

 }

 public static void main(String... args) {

 rec(1000);

 System.out.println("ALL DONE.");

 }

}

Listing 4-54 Bad Recursive Method

If we run the ExceptionsDemo class , the ALL DONE is not printed. Instead, the program will end
abnormally by throwing a StackOverflowError and mentioning the line where the problem is (in our
case the line where the recursive method calls itself).

Exception in thread "main" java.lang.StackOverflowError

at

chapter.four/com.apress.bgn.four.ex.ExceptionsDemo.recExceptionsDemo.java:7

at

chapter.four/com.apress.bgn.four.ex.ExceptionsDemo.recExceptionsDemo.java:7

...

The StackOverflowError is indirectly a subclass of Error, and is obviously caused by the defective
recursive method that was called. We could modify the code, and treat this exceptional situation and execute
whatever has to be executed next, as shown in Listing 4-55.

package com.apress.bgn.four.exceptions;

public class ExceptionsDemo {

 // other code omitted

 public static void main(String... args) {

 try {

 rec(1000);

 } catch (Throwable r) { }

 System.out.println("ALL DONE.");

 }

}

Listing 4-55 Another Bad Recursive Method

In the console only the ALL DONE message is printed, with no trace of the error. That is expected since
we caught it and decided not to print any information about it.

 This is also a bad practice called exception swallowing, never do this!

Also, the system should not recover from this, as the result of any operation after an Error being
thrown is unreliable.

 This is why, it is a very bad practice to catch a Throwable!

The Exception class is the superclass of all exceptions that can be caught and treated, and the system
can recover from them. Any subclasses of the Exception class that are not subclasses of
RuntimeException are checked exceptions. These types of exceptions are known at compile time,
because they are part of the methods declarations. Any method that is declared to throw a checked
exception, when used in the code, enforces either the propagation of the exception further or it requires the
developer to write code to treat the exception.

The RuntimeException class is the superclass of exceptions that are thrown during the execution of
the program, so the possibility of them being thrown is not known when the code is written. Consider the
code sample in Listing 4-56.

package com.apress.bgn.four.exceptions;

import com.apress.bgn.four.hierarchy.Performer;

public class AnotherExceptionsDemo {

 public static void main(String... args){

 Performer p = PerformerGenerator.get("John");

 System.out.println("TTL: " + p.getTimeToLive());

 }

}

Listing 4-56 Code Sample That Might Throw an Exception

Let’s suppose we do not have access to the code of the PerformerGenerator class , so we cannot see
its code. We just know that calling the get(..) method with a name is supposed to return a Performer
instance . So we write the preceding code and try to print the performer’s time to live. What will happen if
the p variable is not actually initialized with a proper object, because the get("John") call returns null?

The outcome is depicted in the next code snippet:

Exception in thread "main" java.lang.NullPointerException:

 Cannot invoke "com.apress.bgn.four.hierarchy.Performer.getTimeToLive()" becau

null at

com.apress.bgn.four.exceptions.AnotherExceptionsDemo.main(AnotherExceptionsDem

As you can see, the exception message telling you what is wrong is pretty explicit. It is actually more
explicit than the one in the previous edition of this book. More precise NullPointerExceptions are a feature of
Java 17.

But being smart developers (or a little paranoid), we prepare for this case. Depending on the
requirements of the application we can do any of the following three things.

1. Catch the exception and print an appropriate message and exit the application. Catching an
exception is done using a try/catch block. The syntax is pretty simple, and the behavior can be explained as
follows: the JVM tries to execute the statements in the try block; if an exception is thrown that matches the
type in the catch block declaration, the code in this block is executed.

This is recommended when the rest of the code cannot be executed without a Performer instance , as
depicted in Listing 4-57.

package com.apress.bgn.four.exceptions;

import com.apress.bgn.four.hierarchy.Performer;

public class AnotherExceptionsDemo {

 public static void main(String... args){

 Performer p = PerformerGenerator.get("John2");

 try {

 System.out.println("TTL: " + p.getTimeToLive());

 } catch (Exception e) {

 System.out.println("The performer was not initialised properly

because of: " + e.getMessage());

 }

 }

}

Listing 4-57 Code Sample That Might Throw an Exception

The exception that was thrown here is of type NullPointerException, a class that extends
RuntimeException, so a try/catch block is not mandatory. This type of exception is called an unchecked
exception , because the developer is not obligated to check for them.

 The NullPointerException is the exception type Java beginner developers struggle with a lot,
because they do not have the “paranoia sense” developed well enough to always test objects with
unknown origin before using them.

2. Throw an appropriate exception type. This is suitable when there is a different class calling the
problematic code and that class will handle the exception appropriately, as depicted in Listing 4-58.

// ExtraCallerExceptionsDemo.java

package com.apress.bgn.four.exceptions;

import com.apress.bgn.four.hierarchy.Performer;

class Caller {

 public void printTTL(String name) throws EmptyPerformerException {

// thrown exception declaration

 try {

 Performer p = PerformerGenerator.get(name);

 System.out.println("TTL: " + p.getTimeToLive());

 } catch (Exception e) {

 throw new EmptyPerformerException("There is no performer named "

+ name, e); // wrapping happens here

 }

 }

}

public class ExtraCallerExceptionsDemo {

 public static void main(String... args){

 Caller caller = new Caller();

 try {

 caller.printTTL("John2");

 } catch (EmptyPerformerException e) {

 System.out.println(e.getMessage());

 }

 }

}

// EmptyPerformerException.java

package com.apress.bgn.four.exceptions;

public class EmptyPerformerException extends Exception {

 public EmptyPerformerException(String message, Throwable cause) {

 super(message, cause);

 }

}

Listing 4-58 Code Sample That Wraps the Exception Into a Custom Exception Type

Notice the EmptyPerformerException class . This is a simple custom class that extends the
java.lang.Exception class, making it a checked exception. They are declared as explicitly being thrown
by a method, as you can see in the �irst bold line in the code. In this case, when invoking that method, the
compiler will force the developer to treat that exception or throw it forward. If the printTTL(..) method
would be declared without the throws EmptyPerformerException snippet, a compile time error will
be thrown and the code will not be executed. IntelliJ IDEA being a very smart editor and using the JVM
compiler to verify your code will notify you that something is not okay in your code by underlining it with a
red line. This situation is depicted in Figure 4-15, where the throws EmptyPerformerException was
commented to show the compiler being totally not okay with the situation.

Figure 4-15 Compile errors caused by checked exception not being declared as being thrown by the printTTL(..) method

Also, in the main(..) method, a try/catch block is required to catch and treat this type of exception,
as shown in Listing 4-56. The main(..) method must be declared with throws
EmptyPerformerException too, to be allowed to pass the exception further, in this case to the JVM.

 You can think of exceptions are like the CO2 bubbles in a frizzy drink: they tend to �loat up to the
surface if not stopped by a �ilter. In Java the surface is represented by the JVM running the application.
When JVM encounters an exception, it stops running the application.

Notice how in the line creating the EmptyPerformerException object , the original exception is
provided as an argument, as per the constructor declaration. This is done so its message is not lost and can
be used to debug the unexpected situation, since it will point directly to the problematic line.

3. Perform a dummy initialization. This is suitable when the code following the problematic call does
different things depending on the performer instance returned, as depicted in Listing 4-59.

package com.apress.bgn.four.exceptions;

import com.apress.bgn.four.classes.Gender;

import com.apress.bgn.four.hierarchy.Performer;

class DummyInitializer {

 public Performer getPerformer(String name) {

 Performer p = PerformerGenerator.get(name);

 try {

 System.out.println("Test if valid: " + p.getName());

 } catch (Exception e) {

 p = new Performer("Dummy", 0, 0.0f, Gender.UNSPECIFIED); //

exception swallowing happens here

 }

 return p;

 }

}

public class DummyInitExceptionDemo {

 public static void main(String... args) {

 DummyInitializer initializer = new DummyInitializer();

 Performer p = initializer.getPerformer("John2");

 if("Dummy".equals(p.getName())) { // different behaviour based on

performer name

 System.out.println("Nothing to do.");

 } else {

 System.out.println("TTL: " + p.getTimeToLive());

 }

 }

}

Listing 4-59 Code Sample That Performs a Dummy Initialization

Notice how here the original exception is not used anywhere; it is being swallowed, and thus in case of
trouble, the root cause of the problem is hidden. In applications where the original exception is not critical, a
curated warning log message is printed to notify the developer that there was some behavior there that
should be taken a note of.

 Keep in mind all the changes listed in this section apply to the code calling the
PerformerGenerator.get("John") method, because it is assumed that we cannot modify the
contents of this class. If the class is accessible, the method can be modi�ied to return an
Optional<Performer>. More about this type of object can be read in future chapters.

And since we are talking about exceptions, the try/catch block can be completed with a �inally block.
The contents of the finally block are executed if the exception does not match any of the types declared in
the catch block (more than one type can be declared in a catch block, and it will be discussed later in the
book), and is thrown further, or if the method returns normally. The only situation in which the finally
block is not executed is when the program ends in an error. Listing 4-60 is an enriched version of the code
shown in Listing 4-58 that includes a �inally block for the Caller example.

package com.apress.bgn.four.exceptions;

public class FinallyBlockDemo {

 public static void main(String... args) {

 try {

 Caller caller = new Caller();

 caller.printTTL("John");

 } catch (EmptyPerformerException e) {

 System.out.println("Cannot use an empty performer!");

 } finally {

 System.out.println("All went as expected!");

 }

 }

}

Listing 4-60 Code Sample That Shows a finally Block

Later in this book, code that will end in exceptional situations will sometimes be used as example to
provide the opportunity expand the exceptions topic even further when your knowledge will be a little more

advanced.

Generics
Up to this point in the chapter we have covered only object types and Java templates used for creating
objects. But what if we needed to design a class with functionality that applies to multiple types of objects?
Since every class in Java extends the Object class, we can create a class with a method that receives a
parameter of type Object, and in the method we can test the object type. It would be cumbersome, but it
can be done, and it will be covered later.

In Java 5 the possibility to use a type as parameter when creating an object was introduced. The classes
that are developed to process other classes are called generics. There are a lot of examples for generics, but
I will start with the one that I needed �irst when learning Java.

When writing Java applications, you will most likely need at some point to pair up values of different
types. The simplest version of a Pair class that can hold pair of instances of any types is shown in Listing 4-
61.

package com.apress.bgn.four.generics;

public class Pair<X, Y> {

 protected X x;

 protected Y y;

 private Pair(X x, Y y) {

 this.x = x;

 this.y = y;

 }

 public X x() {

 return x;

 }

 public Y y() {

 return y;

 }

 public void x(X x) {

 this.x = x;

 }

 public void y(Y y) {

 this.y = y;

 }

 public static <X, Y> Pair<X, Y> of(X x, Y y) {

 return new Pair<>(x, y);

 }

 @Override public String toString() {

 return "Pair{" + x.toString() +", " + y.toString() + '}';

 }

}

Listing 4-61 Generic Class Pair<X,Y>

We now have a generic Pair class declaration. X and Y represent any Java type in an application. The
toString() method is inherited from the Object class and overridden in the Pair class to print the

values of the �ields. The next step is to use it. To prove that the Pair class can be used to couple instances of
any type, in Listing 4-62, the following pairs of objects are created:

a pair of Performers that we can only assume they sing together since the variable is named duet.
a pair of a Performer instance, and a Double instance representing this performer’s net worth; the
variable is named netWorth.
a pair of a String instance representing the genre of a performer and a Performer instance; the
variable is named johnsGenre.

package com.apress.bgn.four.generics;

import com.apress.bgn.four.classes.Gender;

import com.apress.bgn.four.hierarchy.Performer;

public class GenericsDemo {

 public static void main(String... args) {

 Performer john = new Performer("John", 40, 1.91f, Gender.MALE);

 Performer jane = new Performer("Jane", 34, 1.591f, Gender.FEMALE);

 Pair<Performer, Performer> duet = Pair.of(john, jane);

 System.out.println(duet);

 Pair<Performer, Double> netWorth = Pair.of(john, 34_000_000.03);

 System.out.println(netWorth);

 Pair<String, Performer> johnsGenre = Pair.of("country-pop", john);

 System.out.println(johnsGenre);

 }

}

Listing 4-62 Using the Pair<X,Y> Generic Class

When the previous class is executed, the following messages are printed in the console.

Pair{com.apress.bgn.four.hierarchy.Performer@279f2327,

com.apress.bgn.four.hierarchy.Performer@2ff4acd0}

Pair{com.apress.bgn.four.hierarchy.Performer@279f2327, 3.400000003E7}

Pair{country-pop, com.apress.bgn.four.hierarchy.Performer@279f2327}

The println(...) method expects its argument to be a String instance, and if it isn’t the
toString() method will be called on the object given as argument. If the toString() method was not
overridden in a class extending Object, the one from the Object class will be called that returns the full
quali�ied name of the class and something called a hashcode, which is a numerical representation of the
object.

There are a lot of generic classes in the JDK that you can use to write code, and some of them will be
introduced later. This section is here just to introduce you to the typical generics syntax. This will help you
recognize them easily and know how they are used.

var and the Diamond Operator
In Java 10, something developers have been asking for years happened: the possibility to declare variables
without their type, leaving the compiler to infer it became possible by the introduction of the var keyword .
Languages like Python, Groovy, and JavaScript provided this for years, and Java developers wanted it too.

It is not a big effort to write:

String message = "random message";

instead of

var message = "random message"; // compiler infers type String

But var becomes a lot more helpful when multilayered generic types are involved. For example, this
statement:

HashMap<Long, Map<String, ? extends Performer>> performers = new

HashMap<Long, Map<String, ? extends Performer>>() ;

can be written as

var performers = new HashMap<Long, Map<String, ? extends Performer>>() ;

That same statement can be simpli�ied by using the diamond operator, introduced in Java 7. The
diamond operator allows omitting the names of the generic types used when instantiating a variable if they
can be inferred by the compiler from the declaration. So the previous can also be written as:

HashMap<Long, Map<String, ? extends Performer>> performers3 =

 new HashMap<>();

 A statement like var performers = new HashMap<>(); is valid, but the compiler has no way
of deciding the type of the instances that can be added to the performers map. So a statement like
performers.put(null, null); is correct since null does not have a type, but anything else like
performers.put("john", "mayer"); will cause a compile error.

The var keyword can simplify the code being written in Java, but it has a long way to go. For now, it is
being allowed only in the body of methods, indexes for enhanced loops, lambda expressions, constructors,
and loop and initialization blocks. It cannot be used in class �ield declarations or constants. Thus, the
compiler can infer the type only for local variables.

var cannot be used to declare variables that are not initialized, because this doesn’t give the compiler
any information about the type of the variable. So the var list; statement causes a compiler error. But
var list = new ArrayList<String>(); works just �ine.

 Although var cannot be used as an identi�ier this doesn’t make it a keyword. That is why a class �ield
named var can be declared, for example. Since it replaces the type name of a variable, var is actually a
reserved type name.

Summary
The most often used elements of the Java language were introduced in this chapter. Hopefully after this
chapter not much you will �ind in future code samples code will surprise you, so you can focus on learning
the language properly. Do not worry if some things seem unclear at this point; they will become clearer later
as your understanding of the language grows. Here are the things that you should be left with after reading
this chapter:

Syntax mistakes prevent Java code from being transformed into executable code. This means the code is
not compiling.
Static variables can be used directly when static import statements are used. The same applies to static
methods.
Java identi�iers must respect naming rules. A single underscore _ is not an accepted Java identi�ier.
Comments are ignored by the compiler and there are three types of comments in Java.
Classes, interfaces, and enums are Java components used to create objects.
Enums are special types of classes that can only be instantiated a �ixed number of times.
Records are special types of classes used to create data-immutable objects.

Abstract classes cannot be instantiated, even if they can have constructors.
Interfaces could only contain skeleton (abstract) and static methods until Java version 8, when default
methods were introduced.
Private methods and private static methods are allowed in interfaces starting with Java 9.
In Java there is no multiple inheritance using classes.
Interfaces can extend other interfaces.
Java de�ines a �ixed number of keywords named reserved keywords that can be used only for speci�ic
purposes, and cannot be used as identi�iers. The list of Java keywords tends to stay quite constant
between Java versions. This list will to be incomplete for versions bigger than Java 17. The reserved
keywords are covered in the following section.

Java Keywords
At the beginning of this chapter it was mentioned that there is a list of Java keywords that can be used only
for their �ixed and prede�ined purpose in the language. This means they cannot be used as identi�iers: you
cannot use them as names for variables, classes, interfaces, enums, or methods. You can �ind them in Tables
4-2 and 4-3.

Table 4-2 Java Keywords (Part 1)

Keyword Description

abstract Used to declare a class or method as abstract—as in, any extending or implementing class, must provide a concrete
implementation.

assert Used to test an assumption about your code. Introduced in Java 1.4, it is ignored by the JVM, unless the program is run with “-
ea” option.

boolean

byte

char

short

int

long

float

double

Primitive type names.

break Statement used inside loops, to terminate them immediately.

continue Statement used inside loops, to jump to the next iteration immediately.

switch Statement name, used to test equality against a set of values known as cases.

case Statement used to de�ine case values in a switch statement.

default Used to declare a default case within a switch statement. And starting with Java 8 it can be used to declare default methods in
interfaces.

try

catch

finally

throw

throws

Keywords used in exception handling.

class

interface

enum

Keywords used to declare classes, interfaces and enums .

extends

implements

Keywords used in extending classes and implementing interfaces.

const Not actually used in Java, is a keyword borrowed from C where it is used to declare constants, variables that are assigned a
value, that cannot be changed during the execution of the program.

final The equivalent of the const keyword in Java. Anything de�ined with this modi�ier, cannot change after a �inal initialization. A
�inal class cannot be extended. A �inal method cannot be overridden. A �inal variable has the same value that was initialized
with throughout the execution of the program. Any code written to modify �inal items, will lead to a compiler error.

 Surprisingly, record is not a keyword.

1

2

Table 4-3 Java Keywords (Part 2)

Keyword Description

do

for

while

Keywords used to create loops: do{..} while(condition) ,

while(condition){..} ,

for(initialisation;condition;incrementation){..}

goto Another keyword borrowed from C , but that is currently not used in Java, because it can be replaced by labeled
break and continue statements.

if else Used to create conditional statements: if(condition) {..} ,

else {..} ,

else if (condition) {..}

import Used to make classes and interfaces available in the current source code.

instanceof Used to test instance types in conditional expressions.

native This modi�ier is used to indicate that a method is implemented in native code using JNI (Java Native Interface).

new Used to create Java instances.

package Used to declare the package the class/interface/enum/annotation/record is part of. It should be the �irst Java
statement line.

public private

protected

Access level modi�iers for Java items (templates, �ields, or methods).

return Keyword used within a method to return to the code that invoked it. The method can also return a value to the
calling code.

static This modi�ier can be applied to variables, methods, blocks and nested class. It declares an item that is shared
between all instances of the class where declared.

stricfp Used to restrict �loating-point calculations to ensure portability. Added in Java 1.2.

super Keyword used inside a class to access members of the super class.

this Keyword used to access members of the current object.

synchronized Used to ensure that only one thread executes a block of code at any given time.This is used to avoid a problem cause
race-condition.4

transient Used to mark data that should not be serialized.

volatile Used to ensure that changes done to a variable value are accessible to all threads accessing it.

void Used when declaring methods as a return type to indicate that the method does not return a value.

_(underscore) Cannot be used as an identi�ier starting with Java 9.

Important mentions:

true and false are boolean literals, but they are not reserved keywords. For example, true and false
are valid package names.
var is a reserved type name. For example, var can be used as a �ield name or a package name.
null is not a reserved keyword either. It is a literal used to represent missing object, but it is a valid name
for a package, for example.
yield and record are not reserved keywords, but restricted identi�iers.
after modules were added the word module and the names of all directives became restricted
keywords. They are special words to be used only for their sole purpose to declare and con�igure
modules.

Footnotes
Although practical, Lombok causes for setters and getters to be skipped when generating JavaDoc and other problems, but if you are

interested you can read more about it at Project Lombok, Title Page, https://projectlombok.org, accessed October 15, 2021.

Also one of the clean coding principles; you can read more about it at Aspire Systems Poland Blog, “Top 9 Qualities of Clean Code,”

https://blog.aspiresys.pl/technology/top-9-principles-clean-code, accessed October 15, 2021.

https://projectlombok.org/
https://blog.aspiresys.pl/technology/top-9-principles-clean-code

3

4

A good article about them is available at Hackernoon, “SOLID Principles Made Easy,” https://hackernoon.com/solid-principles-

made-easy-67b1246bcdf, accessed October 15, 2021.

A detailed article describing this problem and ways to avoid it can be found at Devopedia, “Race Condition (Software),”

https://devopedia.org/race-condition-software, accessed October 15, 2021.

https://hackernoon.com/solid-principles-made-easy-67b1246bcdf
https://devopedia.org/race-condition-software

(1)

© Iuliana Cosmina 2022
I. Cosmina, Java 17 for Absolute Beginners
https://doi.org/10.1007/978-1-4842-7080-6_5

5. Data Types

Iuliana Cosmina1

Edinburgh, UK

In the previous chapter a lot of Java code was written, but when designing the class only the simplest data
types were used: a few numeric ones and texts. In the JDK a lot of data types are declared for a multitude of
purposes: for modelling calendar dates; for representing multiple types of numerics; and for manipulating
texts, collections, �iles, database connections, and so on. Aside from JDK, there are libraries created by other
parties that provide even more functionality. The data types provided by the JDK are fundamental types, the
bricks every Java application is built from. Depending on the type of application you are building, you might
not need all of them. For example, I’ve never had the occasion to use the java.util.logging.Logger
class. Most applications I have worked on were already set up by a different team when I came along, and
they were using external libraries like Log4j, Logback, or logging abstractions like Slf4j.

This section will cover the basic Java Data Types that you will need to write about 80% of any Java
application.

Stack and Heap Memory
Java types can be split in two main categories: primitive and reference types. Java code �iles are stored on the
HDD, Java bytecode �iles as well. Java programs run on the JVM which is launched as a process by executing
the java executable. During execution, all data is stored in two different types of memory named: stack and
heap that are allocated for a program’s execution by the operating system.

The stack memory is used during execution (also referred to as at runtime) to store method primitive
local variables and references to objects stored in the heap. A stack is also a data-structure represented by a
list of values that can only be accessed at one end, also called a LIFO order, which is an acronym for Last In
First Out. The name �its, because every time a method gets called, a new block is created in the stack
memory to hold local variables of the method: primitives and references to other objects in the method.
When the call ends, the block is removed (popped out) and new blocks are created for methods being called
after that.

 A stack data structure is very similar to a stack of plates: you can only add or remove extra plates on
the top. The �irst element in a stack is called head. Operations performed on a stack have speci�ic names:
adding an element to the stack is called a push operation, inspecting the �irst element in the stack is called
a peek or top, and extracting the �irst element in the stack, its head, is called pop. A stack gets emptied by
calling pop repeatedly until its size is zero.

Each JVM execution thread has its own stack memory, and its size can be speci�ied using JVM parameter
-Xss (or equivalent and more explicit -XX:ThreadStackSize). If too many variables are allocated—or
the method being called is recursive and badly designed—the condition to return is never ful�illed and thus
keeps calling itself forever, and you will run into a java.lang.StackOverflowError, which means
there is no stack memory left because every method call will cause a new block to be created on the stack.
The size of the stack memory depends on the platform running the JVM, and it is 1024KB for Unix based
systems (Linux and macOS) and for Windows, it depends on the virtual memory. There is a way to check its
size on your computer. Just open a terminal or command prompt and run this command: java -
XX:+PrintFlagsFinal -version. The command returns a list of JVM con�igurations referred to as
�lags. Some of them are used to con�igure the memory JVM is allowed to manage.

https://doi.org/10.1007/978-1-4842-7080-6_5

Listing 5-1 shows the command being executed on my computer which is a macOS. The grep command
�ilters the output for the criteria provided as argument, thus resulting in a cleaner and scoped output.

> java -XX:+PrintFlagsFinal -version | grep ThreadStack

 # Data Type # Flag Name # = # Flag Value

 intx ThreadStackSize = 1024

Listing 5-1 Showing the Stack Size Default Values on macOS

The heap memory is used at runtime to allocate memory for objects and JRE classes. Objects are
instances of JDK classes or developer de�ined classes. Any object created with new will be stored inside the
heap memory. Objects created inside the heap memory can be accessed by all threads of the application.
Access and management of the heap memory are a little more complex and will be covered more in Chapter
13. The -Xms and -Xmx JVM parameters are used to set initial and maximum size of the heap memory for
a Java program during execution. The heap size may vary depending on the number of objects created by the
program, and if all heap memory allocated to a Java program is full, then a
java.lang.OutOfMemoryError is thrown. The default size for the heap memory depends on the
physical available memory of the computer running the JVM, and its minimum and maximum values and
other additional data can be extracted from the output of the java -XX:+PrintFlagsFinal -
version too.

Listing 5-2 shows the command being executed on my computer which is a macOS with a total physical
memory of 16GB. The grep command �ilters the output for the criteria provided as argument, thus resulting
in a cleaner and scoped output.

> java -XX:+PrintFlagsFinal -version | grep HeapSize

Data Type # Flag Name # = # Flag Value

 size_t MaxHeapSize = 4294967296

 size_t MinHeapSize = 8388608

Listing 5-2 Showing the Heap Size Default Values on macOS

 If you want to learn more about JVM �lags, the Useful JVM Flags article series on this technical blog is
quite a good source: https://blog.codecentric.de/en/?s=JVM+Flags&x=0&y=0.

 Although it is probably too early to see the importance of this information, there are a lot of Java
command line options that you might �ind useful when working on real-world applications. So add this
link to your must-have collection as well:
https://docs.oracle.com/en/java/javase/17/docs/api/index.html.

The java.lang.String class is the most-used class in the Java programming language. Because text
values within an application might have the same value, for ef�iciency reasons this type of objects are
managed a little different within the heap. In the heap there is a special memory region named the String
Pool where all the String instances are stored by the JVM. This has to be mentioned here because the
following piece of code that will be analyzed to explain how memory is managed in Java contains a de�inition
of a String instance, but the String Pool and other details about the String data type will be covered in
detail in its own section later in the chapter.

Let’s consider the executable class in Listing 5-3 and imagine how the memory is organized during its
execution.

01. package com.apress.bgn.five;

02.

03. import java.util.Date;

04.

05. public class PrimitivesDemo {

06. public static void main(String... args) {

07. int i = 5;

https://blog.codecentric.de/en/%253Fs%253DJVM%252BFlags%2526x%253D0%2526y%253D0
https://docs.oracle.com/en/java/javase/17/docs/api/index.html

08. int j = 7;

09. Date d = new Date();

10. int result = add(i, j);

11. System.out.print(result);

12. d = null;

13. }

14.

15. static int add(int a, int b) {

16. String mess = new String("performing add ...");

17. return a + b;

18. }

19. }

Listing 5-3 Code Sample Used to Discuss Memory Usage

Just by looking at this code, can you �igure out which variables are saved on the stack and which on the
heap? Let’s go over the program line by line and see what is happening:

As soon as the program starts, Runtime classes that JVM needs are loaded in the heap memory.
The main(..) method is discovered in line 06, so a stack memory is created to be used during the
execution of this method.
Primitive local variable in line 07, i=5, is created and stored in the stack memory of main(..) method.
Primitive local variable in line 08, j=7, is created and stored in the stack memory of main(..) method.
At this point the program memory looks like the one depicted in Figure 5-1.

Figure 5-1 Java stack and heap memory , after declaring two primitive variables

In line 09 an object of type java.util.Date is declared, so this object is created and stored in the heap
memory and a reference named d is saved on the stack. At this point the program memory looks like the
one depicted in Figure 5-2.

Figure 5-2 Java stack and heap memory, after declaring two primitive variables and an object

In line 10 method add(..) is called with arguments i and j. This means their values will be copied into
the local variables for this method named a and b and these two will be stored in the memory block for
this method.
Inside the add(..) method body in line 16, a String instance is declared. So the String object is
created in the heap memory, in the String Pool memory block, and the reference named mess is stored in
the stack, in the memory block for this method. At this point the program memory looks like the one
depicted in Figure 5-3.

Figure 5-3 Java stack and heap memory, after calling the add(..) method

Also in line 10, the result of the execution of method add(..) is stored into the local variable named
result. At this point the add(..) method has �inished its execution, so its stack block is discarded.
Thus, we can conclude that variables that are stored on the stack exist for as long as the function that
created them is running. In the stack memory of the main(..) method the result variable is saved.
In line 11, the print method is called, but we’ll skip the explanation for this line for simplicity reasons.
In line 12, the d reference is being assigned a null value, which means the object of type Date is now
only in the heap and not linked to the execution of the main(..) method in any way. In that line the JVM
is instructed that that object is no longer needed and thus it can be safely discarded. Which means the
space containing it can be collected and used to store other objects.

At this point the program memory looks like the one depicted in Figure 5-4.

Figure 5-4 Java stack and heap memory, before the ending of the main(..) method execution

Obviously, after the program execution ends all memory contents are discarded.
From version to version small changes have been introduced to the way Java does memory management

—the algorithms deciding how and when space should be allocated and freed in the heap have been
optimized—but the overall memory organization hasn’t change much over the years.

 When applying for a Java developer position, you will most likely be asked what the difference
between stack and heap memory is. So if the previous section did not clarify these two notions for you,
please feel free to consult additional resources, such as this very good article:
https://www.journaldev.com/4098/java-heap-space-vs-stack-memory.

Introduction to Java Data Types
As you have noticed in the previous example, the data types can be split in Java in two big groups based on
where and how they are stored during execution: primitive types and reference types. Let’s introduce
them brie�ly and later explain their most important members.

Primitive Data Types
Primitive types are de�ined by the Java programming language as special types that do not have a
supporting class and are named by their reserved keyword. Variables of these types are saved on the stack
memory and when values are assigned to them using the =(equals) operator, the value is actually copied. So
if we declare two primitive variables of type int as in Listing 5-4:

package com.apress.bgn.five;

https://www.journaldev.com/4098/java-heap-space-vs-stack-memory

public class AnotherPrimitivesDemo {

 public static void main(String... args) {

 int k = 42;

 int q = k;

 System.out.println("k = " + k);

 System.out.println("q = " + q);

 }

}

Listing 5-4 Code Sample Used to Discuss Primitives

We end up with two variables, k and q, both having the same value: 42. When passed as arguments to
other methods, the values of primitive values are copied and used without the initial variables being
modi�ied.

 This means that in Java methods, primitive arguments are passed by value.

This can be proved by creating a method to swap the values of two int variables. The code for the
method and how to use it are depicted in Listing 5-5.

package com.apress.bgn.five;

public class SwappingPrimitivesDemo {

 public static void main(String... args) {

 int k = 42;

 int q = 44;

 swap(k, q);

 System.out.println("k = " + k);

 System.out.println("q = " + q);

 }

 static void swap(int a, int b) {

 int temp = a;

 a = b;

 b = temp;

 }

}

Listing 5-5 Code Sample Used to Show Primitives Are Passed By Value

So what do you think will get printed as values for k and q? If you thought the output is the same as the
one listed here, you are correct.

k = 42

q = 44

This happens because in Java passing arguments to a method is done through their value, which means
for primitives, changing the formal parameter’s (the method arguments) value doesn’t affect the actual
parameter’s value. If you read the previous section, you can already imagine what happens on the stack.
When the swap(..) method is called a new stack memory block is created to save the values used by this
method. During the execution of the method the values might change, but if they are not returned and
assigned to variables in the calling method, the values are lost when the method execution ends. Figure 5-5
depicts the changes that take place on the stack during the execution of the code previously listed.

Figure 5-5 Java passing primitive arguments by value

Reference Data Types
There are 6 reference types in Java:

class types
interface types
enums
array types
records
annotations

Reference types are different from primitive types, because these types are instantiable (except
interfaces and annotations). Instances (objects) of these types are created by calling constructors. Variables
of these types are actually just references to objects stored in the heap. Because the references are stored on
the stack as well, even if we modify the previous code to use references, the behavior will be the same.

Listing 5-6 introduces a class named IntContainer , with the only purpose to wrap int primitive
values into objects.

package com.apress.bgn.five;

public class IntContainer {

 private int value;

 public IntContainer(int value) {

 this.value = value;

 }

 public int getValue() {

 return value;

 }

 public void setValue(int value) {

 this.value = value;

 }

}

Listing 5-6 Code Sample Used to Show IntContainer

Listing 5-7 shows the creation of two objects of this type and two references for them, and new version
of the swap method.

package com.apress.bgn.five;

public class ReferencesDemo {

 public static void main(String... args) {

 IntContainer k = new IntContainer(42);

 IntContainer q = new IntContainer(44);

 swap(k,q);

 System.out.println("k = " + k.getValue());

 System.out.println("q = " + q.getValue());

 }

 static void swap(IntContainer a, IntContainer b) {

 IntContainer temp = a;

 a = b;

 b = temp;

 }

}

Listing 5-7 Code Sample Used to Show Swap of Two int Values Using References

If we run the main(..) method, you will notice that we still get:

k = 42

q = 44

How can this be explained? Java still uses the same style of arguments passing, by value, only this time
the value of the reference is the one passed. Figure 5-6 depicts what is going on in the memory managed by
the JVM for the execution of the previous code.

Figure 5-6 Java passing reference arguments by value

The references to the objects are interchanged in the body of the swap(..) method , but they have no
effect on the k and q references, nor on the objects they point to in the heap. To really exchange the values,
we need to exchange the content of the objects by using a new object. Look at the new version of the
swap(..) method depicted in Listing 5-8.

package com.apress.bgn.five;

public class ReferencesSwapDemo {

 public static void main(String... args) {

 IntContainer k = new IntContainer(42);

 IntContainer q = new IntContainer(44);

 swap(k,q);

 System.out.println("k = " + k.getValue());

 System.out.println("q = " + q.getValue());

 }

 static void swap(IntContainer a, IntContainer b) {

 IntContainer temp = new IntContainer(a.getValue());

 a.setValue(b.getValue());

 b.setValue(temp.getValue());

 }

}

Listing 5-8 Code Sample Used to Show Swap of Two int Values Using References That Actually Swaps the Values

By making use of setters and getters, we exchange the values of the objects, because the references are
never modi�ied inside the body of the method. Figure 5-7 depicts what happens within the memory during
execution of the previous piece of code.

Figure 5-7 Java passing reference arguments by value, swapping object contents

Maybe this example was introduced too early, but it was important so you could witness as early as
possible the major differences between primitive and reference types. We’ll list all the differences in the
summary; until then, let’s introduce the most-used data types in Java.

If we run the main(..) method in Listing 5-8, you will notice that the values of k and q are swapped, as
shown in the output depicted here.

k = 44

q = 42

Java Primitive Types
Primitive types are the basic types of data in Java. Variables of this type can be created by directly assigning
values of that type, so that they are not instantiated. In Java there are eight types of primitive types: six of
them are used to represent numbers, one to represent characters, and one to represent boolean values.
Primitive types are prede�ined into the Java language, and they have names that are reserved keywords.
Primitive variables can have values only in the interval or dataset that is prede�ined for that type. When
being declared as �ields of a class at instantiation time, a default value speci�ic to the type is assigned to the
�ield. Primitive values do not share state with other primitive values.

Most Java tutorials introduce the numeric types �irst and the last two later, but this book will start with
the non-numerics.

The boolean Type
Variables of this type can have only one of the two accepted values: true and false. If you ever heard of
boolean logic, this should be familiar to you. In Java this type of values are used to set/unset �lags and design
execution �lows. The values true and false are themselves reserved keywords.

 Default value for a boolean variable is false.

Another observation: when a �ield is of type boolean the getter for it has a different syntax. It is not
pre�ixed with get but with is. Java IDEs respect this and generate the getters as expected. This makes sense
because of what boolean values are used for. They are useful for modelling properties with only two values.

For example, let’s say we are writing a class to model a conversion process. A boolean �ield can be used to
mark the process state as done or still in process. If the name of the �ield is done, a getter named
getDone() would be pretty unintuitive and quite stupid, but one named isDone() would be quite the
opposite.

Listing 5-9 depicts that class and also shows a main(...) method to test the default value of the done
�ield.

package com.apress.bgn.five;

public class ConvertProcessDemo {

 /* other fields and methods */

 private boolean done;

 public boolean isDone() {

 return done;

 }

 public void setDone(boolean done) {

 this.done = done;

 }

 public static void main(String... args) {

 ConvertProcessDemo cp = new ConvertProcessDemo();

 System.out.println("Default value = " + cp.isDone());

 }

}

Listing 5-9 Code Sample Used to Show Usage of boolean Fields

And as expected, the output printed is:

Default value = false

The boolean type is not compatible with any other primitive type; assigning a boolean value to an int
variable by simple assignment (using =) is not possible. Explicit conversion is not possible either. So writing
something like this:

boolean f = false;

int fi = (int) f;

causes a compilation error like the one shown here.

> javac com/apress/bgn/five/PrimitivesDemo.java

com/apress/bgn/five/PrimitivesDemo.java:39: error: incompatible types:

boolean cannot be converted to int

 int fi = (int) f;

 ^

1 error

We’ll be adding more information about this type in Chapter 6.

The char Type
The char type is used to represent characters. The values are 16-bit unsigned integers representing UTF-16
code units. The interval of the possible values for char variables is from ’\u0000’ to ’\uffff ’ inclusive; as
numbers, this means from 0 to 65535. This means that we can actually try to print the full set of values. As
the representation of the characters is numeric, this means we can convert int values from the previously
mentioned interval to char values.

Listing 5-10 prints all the numeric values of the char interval and their matching characters.

package com.apress.bgn.five;

public class CharListerDemo {

 public static void main(String... args) {

 for (int i = 0; i < 65536; ++i) {

 char c = (char) i;

 System.out.println("c[" + i + "]=" + c);

 }

 }

}

Listing 5-10 Code Sample Used to Print All char Values

 The last char value the for loop statement prints is 65535. The 65536 value is used just as an
upper maximum value. So if i=65336, then nothing gets printed, and the execution of the statement
ends. The for loop will be covered in detail in Chapter 7.

Depending on the operating systems, some of the characters might not be supported. This means they
won’t be displayed, or that they will be replaced with a bogus character. The same goes for white spaces
characters.

If you think the interval dedicated to represent characters is too big, just scroll the console and you will
understand why. The UTF-16 character set contains all numbers as characters, all separators , characters
from Chinese and Arabic, and a lot more symbols.1

Numeric Primitive Types
In the code samples presented so far to introduce Java language basics, we mostly used variables of type
int, but there is more than one numeric primitive type in Java. Java de�ines six primitive numeric types.
Each of them has a speci�ic internal representation on a certain number of bits, which obviously means they
are bounded by a minimum and a maximum value. There are four numeric types to represent integer values
and two numeric types to represent real numbers. In Figure 5-8 you can see the integer (nonreal) types and
the interval of the values for each of them.

Figure 5-8 Java numeric integer (nonreal) types

Anything in a computer is represented using bits of information; each bit can only have a value of 1 or 0,
which is why it is called binary representation. Binary representation is not the focus of this book, but a
short mention will be made because it is important. You might be wondering now why the binary
representation was chosen for our computers. This is primarily because data (in memory and on hard disks)
is stored using a series of ones (on) and zeros (off) binary representations; also, binary operations are really
easy to do, and this makes computers very fast.

Let’s take math for example: we widely use the decimal system, which is made of 10 unique digits from 0
to 9. Internally computers use a binary system, which uses only two digits: 0 and 1. To represent numbers
bigger than 1, we need more bits. So in a decimal system we have 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and so on. In
a binary system to represent numbers we only have two digits, so we’ll have 0, 1, 10, 11, 100, 101, 110, 111,
1000, and so on. If you imagine a bit like a box, in which you can only put ones and zeroes, to represent
numbers like a computer does, you need more and more as the numbers get bigger. As a bit can only have
two values, the number of values to represent is de�ined by a power of 2. Just look at Figure 5-9.

Figure 5-9 Binary numeric representation

On one bit we can represent two values, which is 21; on two bits we can represent four values, which is
22; and so on. This is how we will refer to Java primitive numeric types representation boundaries,
sometimes including a bit for the sign as well .

Java Integer Primitive Types
The following list contains the integer primitive types and their boundaries .

byte is used to represent numbers between -27 and 27-1 inclusive ([-128, 127]). Default value for a byte
�ield is 0 and is represented on 8 bits.
short is used to represent numbers between -215 and 215-1 inclusive ([-32768, 32767]). The interval for
this type is a superset of the byte interval; thus a byte value can be safely assigned to a short variable
without the need for an explicit conversion. This goes for all types that have the interval a superset of the
one for the byte type. In the next code snippet, a byte value is assigned to a short variable and the code
compiles and when executed prints 23. Default value for a short �ield is 0 and is represented on 16 bits.

byte bv = 23;

short sbv = bv;

System.out.println("byte to short: " + sbv);

int is used to represent integer numbers between -231 and 231-1 inclusive ([-2147483648,
2147483647]). Default value for an int �ield is 0 and is represented on 32 bits.
long is used to represent integer numbers between -263 and 263-1 inclusive ([-9223372036854775808,
9223372036854775807]) Default value for a long �ield is 0 and is represented on 64 bits.

 In practice, there is sometimes the need to work with integer numbers outside the interval. For
these situations there is a special class (a class, not a primitive type) in Java named BigInteger that
allocates just as much memory is needed to store a number of any size. Operations with BigInteger
might be slow, but this is the trade-off to work with huge numbers.

Java Real Primitive Types
When it comes to arithmetics , aside from integer numbers we also have real numbers, and they are quite
useful because most prices and most arithmetic operations executed by programs do not result in an integer
numbers. Real numbers contain a decimal point and decimals after it. To represent real numbers in Java two

primitive types are de�ined, called �loating-point types . The �loating-point types are float and double.
Each of them are covered in a little more detail here:

float is used to represent single-precision 32-bit format IEEE 754 values as speci�ied in IEEE Standard
for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985 (IEEE, New York). The default value
is 0.0. A �loating-point variable can represent a wider range of numbers than a �ixed-point variable of the
same bit width at the cost of precision. Values of type int or long can be assigned to variables of type
float. What is actually happening, and why the loss of precision? A number is represented as a �loating-
point number and an exponent, which is actually a power of 10. So when the �loating-point number is
multiplied with 10 at this exponent power, the initial number should result. Let’s take the maximum long
value and assign it to a �loat variable and check what is printed.

float maxLongF = Long.MAX_VALUE;

System.out.println("max long= " + Long.MAX_VALUE);

System.out.println("float max long= " + maxLongF);

The Long.MAX_VALUE is a �inal static variable that has the maximum long value assigned to it:
9223372036854775807. What will the preceding code print? The following:

max long= 9223372036854775807

float max long= 9.223372E18

As you can see, the maxLongF number should be equal to 9223372036854775807, but because it is
represented as a smaller number and a power of 10, precision is lost. If we were to reconstruct the integer
number by multiplying 9.223372 with 1018, it would give us 9223372000000000000. It’s close, but not
close enough. So what are the interval edges for �loat? Float is used to represent real numbers between 1.4E-

45 and 2128 * 1038.

double is used to represent single-precision 64-bit format IEEE 754 values as speci�ied in IEEE Standard
for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985 (IEEE, New York) and is used to
represent numbers between 4.9E-324 and 2127 * 10308. The default value is 0.0.

 Values 0 and 0.0(double) are different in Java. To a normal user they both mean zero, but in
mathematics, the one with the decimal point is more precise. Still, in Java we are allowed to compare an
int value to a float value, and if we compare 0 and 0.0, the result will be that they are equal. Also,
positive zero and negative zero are considered equal; thus the result of the comparison 0.0==-0.0 is
also true.

At the end of this section, it should also be emphasized that developers cannot de�ine a primitive type,
either by de�ining it from scratch or by extending an existing primitive type. Type names are reserved Java
keywords that cannot be rede�ined by the developer. It is prohibited to declare �ields, methods, or class
names that are named as those types.

As you have noticed until now, a variable that we intend to use must be declared �irst and used later.
When it is declared, a value can be associated as well. For primitive values, a number can be written in many
ways. In Listing 5-11 you can see a few samples of how numeric values can be written when variables are
initialized or assigned afterward.

package com.apress.bgn.five;

public class NumericDemo {

 private byte b; // default value 0

 private short s; // default value 0

 private int i; // default value 0

 private long l; // default value 0

 private float f; // default value 0.0

 private double d; // default value 0.0

 public static void main(String... args) {

 NumericDemo nd = new NumericDemo();

 nd.b = 0b1100;

 System.out.println("Byte binary value: " + nd.b);

 nd.i = 42 ; // decimal case

 nd.i = 045 ; // octal case - base 8

 System.out.println("Int octal value: " + nd.i);

 nd.i = 0xcafe ; // hexadecimal case - base 16

 System.out.println("Int hexadecimal value: " + nd.i);

 nd.i = 0b10101010101010101010101010101011;

 System.out.println("Int binary value: " + nd.i);

 //Starting with Java 7 ‘_’ can be used in numeric values

 nd.i = 0b1010_1010_1010_1010_1010_1010_1010_1011;

 System.out.println("Int binary value: " + nd.i);

 nd.l = 1000_000l; // equivalent to 1000_000L

 System.out.println("Long value: " + nd.l);

 nd.f = 5;

 System.out.println("Integer value assigned to a float variable: " +

nd.f);

 nd.f = 2.5f; // equivalent to nd.f = 2.5F;

 System.out.println("Decimal value assigned to a float variable: " +

nd.f);

 nd.d = 2.5d; // equivalent to nd.d = 2.5D;

 System.out.println("Decimal value assigned to a double variable: " +

nd.f);

 }

}

Listing 5-11 Code Sample Used to Print Primitive Values in Multiple Ways

As you can �igure out from the previous listing, integer numbers can be represented in Java in four ways:

decimal: base 10, written using digits 0 to 9.
octal: base 8, written using digits 0 to 7 and pre�ixed by 0(zero); this means number 8 is represented in
octal as the 010 digits.
hexadecimal: base 16, written using digits 0 to 9 and letters A to F, lowercase or upper case, and pre�ixed
by 0x or 0X; this means number 10 is represented in hexadecimal as 0x00A, 11 as 0x00B and so on until
the letters in the set end, and 16 is represented as 0x010.
binary(base 2): base 2, written using digits 0 and 1 and pre�ixed by 0b or 0B. This was already covered
when explaining bits.

You can read more about numeric representation in a computer programming book, but unless you end
up working on some project requiring you to do mathematical operations, you will seldom get to play with
representations other than decimal.

Starting with Java 7, the “_”(underscore) is permitted to be used when declaring numeric values to group
together digits and increase clarity. There are some limitations, such us:

“_” cannot be used at the start or end of a numeric value.
“_” cannot be used for byte values.

“_” cannot be used next to digits or symbols representing the base (0b/0B for binary, 0 for octal,0x/0X for
hexadecimal).
“_” cannot be used next to the decimal point.

The output of the code in Listing 5-11 being executed is depicted in Listing 5-12.

Byte binary value: 12

Int octal value: 37

Int hexadecimal value: 51966

Int binary value: -1431655765

Int binary value: -1431655765

Long value: 1000000

Integer value assigned to a float variable: 5.0

Decimal value assigned to a float variable: 2.5

Decimal value assigned to a double variable: 2.5

Listing 5-12 Output Resulted by Executing the Code in Listing 5-11

As no formatting is done when the variables are printed, the values depicted in the console are in the
decimal system.

For now, this is all that can be said about the primitive types. Each of the primitive types has a matching
reference type de�ined within the JDK that will be mentioned later in the chapter.

Java Reference Types
A short description of the Java Reference Types was given earlier to highlight the difference between
primitive and reference types as early as possible. It is now time to expand that description and give some
examples of the most-used JDK reference types when programming.

Objects or instances are created using the new keyword followed by the call of a constructor. The
constructor is a special member of a class, used to create an object by initialising all �ields of the class with
their default values, or values received as arguments. A class instance is created by calling the class
constructor (one of them, because there might be more than one de�ined within the class). Consider the
example that we had in Chapter 4, the Performer class, to declare a reference to an object of type
Performer the following expression is used:

Performer human = new Performer("John", 40, 1.91f, Gender.MALE);

The interface reference types cannot be instantiated, but objects of class types that implement that
interface can be assigned to references of that interface type. The hierarchy used in Chapter 4 is depicted in
Figure 5-10.

Figure 5-10 Class and interface hierarchy

Based on this hierarchy, the four statements in Listing 5-13 are valid; they compile, and the code can be
executed successfully.

package com.apress.bgn.five;

import com.apress.bgn.four.classes.Gender;

import com.apress.bgn.four.hierarchy.*;

public class ReferencesDemo {

 public static void main(String... args) {

 Performer performer = new Performer("John", 40, 1.91f, Gender.MALE);

 Human human = new Performer("Jack", 40, 1.91f, Gender.MALE);

 Actor actor = new Performer("Jean", 40, 1.91f, Gender.MALE);

 Musician musician = new Performer("Jodie", 40, 1.71f,

Gender.FEMALE);

 }

}

Listing 5-13 Code Sample Showing Different Reference Types

In the previous example we created four objects of type Performer and assigned them to different
reference types, including two interface reference types. If we were to inspect the stack and heap contents
for the preceding method, here is what we would �ind (Figure 5-11):

Figure 5-11 Multiple reference types

All the references in the previous example point to different objects in the heap. Having refferences of
different types pointing to the same object is possible too, as shown in Listing 5-14.

package com.apress.bgn.five;

import com.apress.bgn.four.classes.Gender;

import com.apress.bgn.four.hierarchy.*;

public class ReferencesDemo {

 public static void main(String... args) {

 Performer performer = new Performer("John", 40, 1.91f, Gender.MALE);

 Human human = performer;

 Actor actor = performer;

 Musician musician = performer;

 }

}

Listing 5-14 Code Sample Showing Different Reference Types Pointing to the Same Object

In the previous code snippet, we’ve created only one object, but multiple references to it, of different
types. If we were to inspect the stack and heap contents again, for the preceding method, here is what we
would �ind (Figure 5-12):

Figure 5-12 Multiple reference types, second example

References can only be of type or super-type of an assigned object, so the assignments in Listing 5-15
will not compile.

package com.apress.bgn.five;

import com.apress.bgn.four.classes.Gender;

import com.apress.bgn.four.hierarchy.*;

public class BadReferencesDemo {

 public static void main(String... args) {

 Performer performer = new Performer("John", 40, 1.91f, Gender.MALE);

 Human human = performer;

 Actor actor = performer;

 Musician musician = performer;

 //these will not compile!!!

 performer = musician;

 //or

 performer = human;

 //or

 performer = actor;

 }

}

Listing 5-15 Code Sample Showing Assignments Failing at Compile Time

This is because the methods are called on the reference type, so the object the reference is pointing to
must have those methods. That is why the Java Compiler complains, and that is why smart editors notify you
by underlining the statement with a red line. The easiest way to �ix the compiling erros in the previous
example is an explicit cast (or conversion) to the Performer type . But this doesn’t mean that the code will
be runnable.

The easiest way to prove this is by creating a class named Fiddler that implements Musician and
assign an instance of this class to a Performer reference. An explicit conversion of the Fiddler instance
to Performer is necessary to trick the compiler into accepting this code as valid, as shown in the marked
line in Listing 5-16.

package com.apress.bgn.five;

import com.apress.bgn.four.classes.Gender;

import com.apress.bgn.four.hierarchy.*;

public class BadReferencesDemo {

 public static void main(String... args) {

 Musician fiddler = new Fiddler(true);

 Performer performer = (Performer) fiddler;

 System.out.println("Learned the skill at: " +

performer.getSchool());

 System.out.println("Appeared in movies: " + performer.getFilms());

 }

}

class Fiddler implements Musician {

 private boolean ownsFiddle = false;

 public Fiddler(boolean ownsFiddle) {

 this.ownsFiddle = ownsFiddle;

 }

 @Override

 public String getSchool() {

 return "Irish Conservatory";

 }

// other methods omitted

}

Listing 5-16 Code Sample Showing Assignments Failing at Runtime

The Fiddler instance was explicitly converted to Performer and the compiler accepted this, because
it assumes we know what we are doing. The converted instance is then assigned to a reference of type
Performer and then methods getSchool() and .getFilms() are called on it.

When running the previous code, you would expect the performer.getSchool() method to be
executed correctly and “Learned the skill at: Irish Conservatory” to be printed in the console, because after
all, class Fiddler implements Musician and provides a concrete implementation for getSchool(). You
would also expect an exception to be thrown when the next line is executed; calling
performer.getFilms() is not possible since class Fiddler does not implement Actor and does not
provide a concrete implementation for the getFilms() method .

But this is not how JVM does things. Actually, when running this code, an exception will be thrown
exactly when executing the conversion line, because a Fiddler instance cannot be converted to a
Performer instance. A message looking like this will be printed in red in the console.

Exception in thread "main" java.lang.ClassCastException:

 class com.apress.bgn.five.Fiddler cannot be cast to class

com.apress.bgn.four.hierarchy.Performer (com.apress.bgn.five.Fiddler is in mod

chapter.five.primitives of loader 'app'; com.apress.bgn.four.hierarchy.Perform

chapter.four of loader 'app') at

chapter.five.primitives/com.apress.bgn.five.BadReferencesDemo.main(BadReferenc

Arrays
The new keyword can also be used to create arrays, in a similar way it is used to create objects. An array
is a data structure that holds a group of values together. Its size is de�ined when created and cannot be
changed. Each variable can be accessed using an index, which starts from 0 and goes up to the length of the
array -1. Arrays can hold primitive and reference values. Listing 5-17 contains a class with a declaration of
an array �ield that groups together int values.

package com.apress.bgn.five;

public class ArrayDemo {

 int array[];

 public static void main(String... args) {

 ArrayDemo ad = new ArrayDemo();

 System.out.println("array was initialized with " + ad.array);

 }

}

Listing 5-17 Class with int Array Field

 There are two ways to declare an array, depending on where the brackets are positioned: after the
array name or after the array element types:

int array[];

int[] array;

This is important to know because if you are ever interested of getting your Java knowledge certi�ied,2 the
exam might contain questions regarding the correct ways to declare arrays.

What do you think will be printed in the console when the preceding code is executed? If you assumed
that the ad.array �ield will be initialled with null and the message printed will be “array was initialized
with null,” you are quite right in your assumption.

Arrays are reference types, even when they contain elements of a primitive types and thus when left to
the JVM to initialize �ields of this type with a default value, null will be used, as this is the typical default
value for reference types. The null keyword was mentioned before, but let’s emphasize its importance. The
null keyword is used to represent a nonexisting value. A reference that is assigned this value does not have
a concrete object assigned to it; it does not point to an object in the heap. That is why when writing code, if
an object is used (through its reference) before being initialized, a NullPointerException is thrown.
That is why developers test equality to null before using the object (or array).

The previous code snippet could be written a little better to take the possibility of the array being null
into account, and exiting from the main(..) method gracefully using the return keyword, as shown in
Listing 5-18.

package com.apress.bgn.five;

public class ArrayDemo {

 int array[];

 public static void main(String... args) {

 ArrayDemo ad = new ArrayDemo();

 if (ad.array == null) {

 System.out.println("Array unusable. Nothing to do.");

 return;

 }

 }

}

Listing 5-18 Class with int Array Field That Can Be Null

 When a method is declared to return nothing using the void keyword, a correct return from the
method can be enforced by the return; statement without a value. The return; statement is not really
necessary in the previous code sample, is just provided as an example on how to write code to return
from the method in an explicit point of the execution.

Why do we need the null keyword to mark something that does not exist yet? Because it is common
practice in programming to declare a reference �irst and initialize it only when �irst time used. This is useful
especially for objects that are big and require allocating a lot of memory. This programming technique is
called Lazy Loading (also known as asynchronous loading).

Listing 5-19 depicts a more evolved version of the ArrayDemo class where the array �ield it is initialized,
and a size is set for it.

01. package com.apress.bgn.five;

02.

03. public class ArrayDemo {

04.

05. int array[] = new int[2];

06.

07. public static void main(String... args) {

08. ArrayDemo ad = new ArrayDemo();

09. if (ad.array == null) {

10. System.out.println("Array unusable. Nothing to do.");

11. return;

12. }

13.

14. for (int i = 0; i < ad.array.length; ++i) {

15. System.out.println("array["+ i +"]= " + ad.array[i]);

16. }

17. }

18. }

Listing 5-19 Class with int Array Field That is Initialized Properly

The initialization of the array takes place in line 5. The size of the array is 2. The size of the array is
given as a parameter to what it looks like a constructor call, only instead of parentheses, square brackets are
used, pre�ixed by the type of elements the array groups together. By setting the dimension of the array to 2,
we are telling the JVM that two adjacent memory locations will have to be put aside (allocated) for this
object to store two int values in. Because no values were speci�ied as the array contents, what do you think
will they be �illed with when the array is created? This is a simple one: the previous array is de�ined to be
made of two int values, so when the array is initialized, the default value for the int type will be used.

Figure 5-13 depicts what happens in the stack and heap memory when the previous code is executed.

Figure 5-13 Declaring an int array of size 2

In lines 14 to 16 a for loop is used to print the values of the array. The int i variable is what we call an
index variable, and is used to traverse all values of the array by incrementation with 1 in each step of the
loop. The array.length is the property containing the size of the array—how many elements the array
contains. As you probably expected, the output printed in the console is:

array[0]= 0

array[1]= 0

To put some values in an array we have the following choices:

we access the element directly, and we set the values:

array[0] = 5;

array[1] = 7;

//or

for (int i = 0; i < array.length; ++i) {

 array[i] = i;

}

we initialize the array explicitly with the values we intend to store:

int another[] = {1,4,3,2};

Arrays can group references as well. Listing 5-20 depicts how a Performer array can be declared and
used.

package com.apress.bgn.five;

import com.apress.bgn.four.classes.Gender;

import com.apress.bgn.four.hierarchy.Performer;

public class PerformerArrayDemo {

 public static void main(String... args) {

 Performer[] array = new Performer[2];

 for (int i = 0; i < array.length; ++i) {

 System.out.println("performer[" + i + "]= " + array[i]);

 }

 array[0] = new Performer("Julianna", 35, 1.61f, Gender.FEMALE);

 array[1] = new Performer("John", 40, 1.91f, Gender.MALE);

 for (int i = 0; i < array.length; ++i) {

 System.out.println("performer[" + i + "]= " + array[i].getName()

);

 }

 }

}

Listing 5-20 Class Creating a Performer Array

Before explicit initialization, elements of the array are initialized with the default value for the
Performer type . Since Performer is a reference type, that value is null.

Because depicting the memory contents makes it more obvious what happens with our array and
objects, I give to you Figure 5-14.

Figure 5-14 Declaring an array of performers with size 2

So yes, we actually have an array of references, and the object they point to can be changed during the
program.

A last thing I need to cover here is that arrays can be multidimensional. If you studied advanced math
you probably remember the matrix concept, which was a rectangular array arranged in rows and columns.
In Java, you can model matrices by using arrays. If you want a simple matrix with rows and columns, you just
de�ine an array with two dimensions. A very simple example is depicted in Listing 5-21.

package com.apress.bgn.five;

public class MatrixDemo {

 public static void main(String... args) {

 // bi-dimensional array: 2 rows, 2 columns

 int[][] intMatrix = {{1, 0}, {0, 1}};

 int[][] intMatrix2 = new int[2][2];

 for (int i = 0; i < intMatrix2.length; ++i) {

 for (int j = 0; j < intMatrix2[i].length; ++j) {

 intMatrix2[i][j] = i + j;

 System.out.print(intMatrix[i][j] + " ");

 }

 System.out.println();

 }

 }

}

Listing 5-21 Class Modelling a Matrix Using a 2-Dimensional Array

You can even go multidimensional, and de�ine as many coordinates you want. In Listing 5-22 we
modelled a cube by using a three-dimensional array.

package com.apress.bgn.five;

public class CubeDemo {

 public static void main(String... args) {

 // three-dimensional array with three coordinates

 int[][][] intMatrix3 = new int[2][2][2];

 for (int i = 0; i < intMatrix3.length; ++i) {

 for (int j = 0; j < intMatrix3[i].length; ++j) {

 for (int k = 0; k < intMatrix3[i][j].length; ++k) {

 intMatrix3[i][j][k] = i + j + k;

 System.out.print("["+i+", "+j+", " + k + "]");

 }

 System.out.println();

 }

 System.out.println();

 }

 }

}

Listing 5-22 Class Modelling a Cube Using a 3-Dimensional Array

When it comes to arrays, make them as big as you need them and your memory allows, but make sure to
initialize them and make sure in your code that you do not try to access indexes outside the allowed range. If
the size of an array is N, then its last index is N-1 and its �irst is 0. Try to access any index outside that range
and an exception of type java.lang.ArrayIndexOutOfBoundsException will be thrown at runtime.
So if you write code like this:

int array = new int[2];

array[5] =7;

Although it compiles, the execution fails, because of an exception being thrown. The following will be
printed in the console:

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: Index 5

out of bounds for length 2 at chapter.five.arrays@1.0-SNAPSHOT/com.apress

 .bgn.five.ArrayDemo.main(ArrayDemo.java:49)

For easier handling of arrays in Java there is a special class: java.util.Arrays. This class provides
utility methods to sort and compare arrays, to search elements, or to convert their contents to text or to a
stream (Chapter 8), so that they can be printed without writing the tedious for loop used so far in the
examples. Listing 5-23 depicts a few of these utility methods.

package com.apress.bgn.five;

import java.util.Arrays;

public class ArrayUtilitiesDemo {

 public static void main(String... args) {

 int[] array = {4, 2};

 System.out.println(Arrays.toString(array));

 // or

 Arrays.stream(array).forEach(ai -> System.out.println(ai));

 // or using a method reference

 Arrays.stream(array).forEach(System.out::println);

 Arrays.sort(array);

 array = new int[]{4, 2, 1, 5, 7};

 int foundAt = Arrays.binarySearch(array, 5);

 System.out.println("Key found at: " + foundAt);

 }

}

// output

[4, 2]

4

2

4

2

Key found at: -11

Listing 5-23 java.util.Arrays Useful Methods

A short explanation each statement in the previous code listing can be found in the following list:

1.
int[] array = {4, 2} is an array declaration and initialization. The new int[] is not required
as the compiler can �igure out the type of elements from the declaration of the array, and the size of the
array from the size of the set of values provided for initialization.

2.
Arrays.toString(array) returns String representation of the contents of the speci�ied array. The
elements string representations are separated by commas, and the resulting string is enclosed in square
brackets([]).

3.
Arrays.stream(array) returns a sequential IntStream with the speci�ied array as its source.
Streams are covered in a dedicated chapter (Chapter 8), and these classes provide methods to process
elements one by one, without the need of a for loop. In the previous code snippet the elements of the
resulting stream are processed using the System.out.println(..) method, which means they are
printed in the console one by one.

4.
Arrays.sort(array) sorts the speci�ied array into ascending numerical order. This method does
not return a new sorted array, so the elements change positions within the original array. The algorithm
used to perform the sorting is called Dual-Pivot Quicksort and is one of the most ef�icient sorting
algorithms.3

5.
array = new int[]{4, 2, 1, 5, 7} is a reinitialization of the array. This means a new array
value is assigned to the array reference. So the declaration must specify the new keyword together
with the type and the array size, unless a set of elements is used for the intialization; which is exactly the
case of this statement, so the size is not mandatory.

6. Arrays.binarySearch(array, 5) searches the array for the value provided as argument (in this
case, 5) and returns a value representing the position of the element in the array (ergo, its index). The
algorithm used for the search is called Binary Search and works by splitting the array repeatedly in two
parts until the element is found. This technique is called Divide-et-Impera (or Divide-and-conquer),
and it involves splitting a big problem into smaller problems repeatedly (recursively) until they can be
easily solved. Binary search on an array is the most ef�icient when the array is sorted.

 Feel free to search the web for the algorithms mentioned in this section, because they are useful
to understand when you need to develop your own solutions. Chapter 7 will show you how to write
code following a few simple and well-known algorithms.

The String Type
The next special Java data type on our list is String. Together with the primitive int, this is one of the
most-used type in Java. String instances are used to model texts and perform all kind of operations on
them. The String type is a special type, because objects of this type are given special treatment by the JVM. If
you remember the �irst image with memory contents, the String object was allocated in the heap in a
special place called String Pool . In this section dedicated to it this type will be covered in detail, and a lot of
questions you might have had so far will hopefully get an answer.

Until now String variables were declared in this book, as depicted in Listing 5-24:

package com.apress.bgn.five;

public class SimpleStringDemo {

 public static void main(String... args) {

01. String text1 = null;

02.

03. String text21 = "two";

04. String text22 = "two";

05. String text23 = new String ("two");

06.

07. String piece1 = "t";

08. String piece2 = "wo";

09. String text24 = piece1 + piece2;

10.

11. char[] twoCh = {'t', 'w', 'o'};

12. String text25 = new String(twoCh);

 }

}

Listing 5-24 A few String Statements Used in This Book

As you can see, each one of the lines 3, 4, 5, 9, and 12 de�ine a String object with the same content
'two'. I intentionally did this for reasons that will become obvious soon enough. In real-world applications,
especially in this big-data hype period, applications handle a lot of data, most of it in text form. So being able
to compress the data and reuse it would reduce the memory consumption. Reducing memory access
attempts increases speed by reducing processing which in turn will reduce costs.

String variables can be initialized with text values directly (lines 3 and 4). In this case the JVM looks
�irst in the String Pool for a String object with the same value. If found, the new String variable is
initialized with a reference to it. If not found, memory is allocated, the text value is written to it, and the new
String variable is initialized with a reference to it.

In line 5, the constructor of the class String is used to create a String object. Notice the new keyword
is being used. This means that allocation for memory to store the text provided as parameter is being
explicitly requested.

Before continuing this section, we have to make a small but important side note and mention what
object equality means in Java. Objects are handled in Java using references to their memory location. The
==(double equals) operator compares memory locations the references point to, so two objects are equal if
and only if they are stored in the same memory address. That is why objects should be compared using the
equals(..) method. This is a special method inherited from the Object class, but each class must
provide its own implementation that is truly relevant to its own structure. As expected, the equals(..)
implementation in the Object class defaults to the == behavior.

 Think about two red balls. They have the same diameter, the same color, and are made of the same
material. They are identical, which translates to Java as being equal, but they are not the same ball; they
were just created using the same speci�ications. If you take two random kids, like Jim and Jane, each can
play with their own ball. But if Jim and Jane play with the same ball, just throwing it from one to the other,

this is pretty similar to equality of references in Java. Figure 5-15 is an abstract representation of this
situation.

Figure 5-15 Showing the difference between equals and == using red balls

Listing 5-25 depicts a simple version the Ball class, and an executable code sample that creates two
separate ball objects and compares them, but also creates a single ball to test equality of references. Since
Jim and Jane could be considered references to a ball, the code was written as such.

package com.apress.bgn.five;

import java.util.Objects;

public class EqualsDemo {

 public static void main(String... args) {

 Ball jim = new Ball(10, "red", "rubber");

 Ball jane = new Ball(10, "red", "rubber");

 System.out.println("-- Playing with different balls -- ");

 System.out.println("Jim and Jane have equal balls? A:" +

jim.equals(jane));

 System.out.println("Jim and Jane have the same ball? A:" + (jim ==

jane));

 System.out.println("-- Playing with the same ball -- ");

 Ball extra = new Ball(10, "red", "rubber");

 jim= extra;

 jane = extra;

 System.out.println("Jim and Jane have equal balls? A:" +

jim.equals(jane));

 System.out.println("Jim and Jane have the same ball? A:" + (jim ==

jane));

 }

}

class Ball {

 int diameter;

 String color;

 String material;

 @Override

 public boolean equals(Object o) {

 Ball ball = (Ball) o;

 return diameter == ball.diameter

 && Objects.equals(color, ball.color)

 && Objects.equals(material, ball.material);

 }

 // other code omitted

}

Listing 5-25 Code Sample Showing Differences Between equals(..) and == on References

Executing the code in the previous listing should produce the following output:

-- Playing with different balls --

Jim and Jane have equal balls? A:true

Jim and Jane have the same ball? A:false

-- Playing with the same ball --

Jim and Jane have equal balls? A:true

Jim and Jane have the same ball? A:true

This previous code sample points out pretty well the difference between the ‘==’ operator and the
equals(..) method on references: the == operator tests references equality, and the equals(..)
method tests the equality of the objects those references point to. The equals(..) method
implementation introduced here is naive, because the nullability and comparison with an object of a
different type should be taken into consideration. And then there is also the hashCode() method that must
be implemented when equals(..) is, otherwise your classes won’t function correctly with some
collection classes that will be covered later in this chapter. But for now, I really hope the difference between
object equality and reference equality is clear, so that the next rest of the String section makes sense.

Object equality parentheses now closed.
In Java String instances are immutable, which means they cannot be changed once created. The

String class is also declared final, so developers cannot extend it. There are multiple reasons why
String instances are immutable in Java, some of them being related to security of applications, but those
reasons are too stuffy to cover in this book. In this section the focus is on the most obvious reason.

Since String instances cannot be changed once created, this means that the JVM can reuse existing
values that were already allocated to form new String values, without consuming additional memory. This
process is called interning. One copy of each text value (literal) is saved into a special memory region called
the String Pool. When a new String variable is created and a value is assigned to it, the JVM �irst searches
the pool for a String of equal value. If found, a reference to this memory address will be returned without
allocating additional memory. If not found, it’ll be added to the pool and its reference will be returned. This
being said, considering the sample code in Listing 5-24 (the one before the equality parentheses), we expect
for text21 and text22 variables to point to the same String object in the pool, which means references
are equal too. Listing 5-26 depicts code that tests the assumption.

package com.apress.bgn.five;

public class SimpleStringDemo {

 public static void main(String... args) {

 String text21 = "two";

 String text22 = "two";

 if (text21 == text22) {

 System.out.println("Equal References");

 } else {

 System.out.println("Different References");

 }

 if (text21.equals(text22)) {

 System.out.println("Equal Objects");

 } else {

 System.out.println("Different Objects");

 }

 }

}

Listing 5-26 Code Sample Showing Differences Between equals(..) and == on String References

When running the preceding code, the following will be printed in the console, proving the previous
af�irmations and the existence of the String Pool .

Equal References

Equal Objects

In Figure 5-16 you can see an abstract representation of the memory contents when the previous code is
executed.

Figure 5-16 Abstract representation of the string pool area created in the heap memory

When a new String object is created using the new operator, the JVM will allocate new memory for the
new object and store it in the heap, so the String pool won’t be used. This results in every String object
created like this having its own memory region with its own address.

 I think it is obvious at this point that using String constructors (there are more than one) to create
String objects is in fact equivalent to wasting memory.

This is why if we were to compare variable text22 and variable text23 from the initial code sample
we would expect their references to be different, but the objects should be equal. Listing 5-27 depicts code
that tests this assumption.

package com.apress.bgn.five;

public class SimpleStringDemo {

 public static void main(String... args) {

 String text22 = "two";

 String text23 = new String ("two");

 if (text22 == text23) {

 System.out.println("Equal References");

 } else {

 System.out.println("Different References");

 }

 if (text22.equals(text23)) {

 System.out.println("Equal Objects");

 } else {

 System.out.println("Different Objects");

 }

 }

}

Listing 5-27 Code Sample Showing Differences Between equals(..) and == on String References

When running the preceding code, the following will be printed in the console, proving everything the
assumption was correct:

Different References

Equal Objects

I leave it up to you to imagine how the stack and heap memory looks like for the previous example.4

 The String Pool had a default size of 1,009 entries until Java 6. Starting with this version its size can
be modi�ied using the -XX:StringTableSize command line option. Since the size varies from one
Java version to another and the memory available to the program, my recommendation is just to run
java -XX:+PrintFlagsFinal -version and look for StringTableSize in the returned output
to get the real size of the String Pool on your machine.

In Listing 5-24, lines 11 and 12 depict how a String instance can be created from a char[3] array.
Until Java 8, internally that was the initial representation for String values—arrays of characters. A
character is represented on 2 bytes, which means a lot of memory was consumed for Strings. In Java 9 a
new representation was introduced called Compact String, which uses byte[] or char[] depending on
the content. This means that the memory consumed by a String processing application will be
signi�icantly lower starting with Java 9.

The String class provides a huge set of methods to manipulate strings; an entire book could probably
be written only about this Java type. These methods will be explained when used in the book, but if you are
curious you can consult the online JavaDoc here
(https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Strin
g.html) or just look them up using your smart editor.

Escaping Characters
There are special characters that cannot be part of a String value. As you have probably noticed, String
values are de�ined between double quotes ("sample"), and this makes the "(double quote) character
unusable as a value. To be able to use it as a String value or part of one, it has to be escaped. Aside from
this character there is also the \(backslash), the \a(alert), and a few others. In Figure 5-17 you can
see how IntelliJ IDEA tries to tell you that you cannot use those characters in the content of a String value.

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html

Figure 5-17 Code samples with special characters

So a single \(backslash) is not allowed to be part of a String value, but two of them are, and it tells
the compiler that the String value contains a \(backslash) character.

System.out.println(" Example using \\.")

//Prints

 Example using \.

As for the \a alliteration, it is not allowed in a String value because the \(backslash) is used to
construct escape sequences, but \a is not an escape sequence.

The ’(single quote) must be escaped as well when used as a character value.

char quote = '\";

There are a few Java escape sequences that can be used in String values to get a certain effect, and the
most important are listed in Table 5-1.

Table 5-1 Java Escape Sequences

Escape Sequence Effect

\n Create a new line (often called the newline character).

\t Create a tab character.

\b Create a backspace character (which might delete the preceding character, depending on the output device).

\r Return to the start of the line (but do not make a new line, the equivalent of the Home key on the keyboard).

\f Form feed (move to the top of the next page for printers).

\s Create a space character.

\ Line terminator.

 The full list of characters to be escaped in String values can be found in the Java Language
Speci�ication documentation here:
https://docs.oracle.com/javase/specs/jls/se16/html/jls-3.html#jls-3.10.7.

https://docs.oracle.com/javase/specs/jls/se16/html/jls-3.html%2523jls-3.10.7

 According to the JLS, it is a compile-time error if the character following a backslash in an escape
sequence is not a \ or an ASCII b, s, t, n, f, r, ", ', \, 0, 1, 2, 3, 4, 5, 6, or 7.

The newline \n and the tab \t character are used quite often in programming to properly format
console output. If we declare a String instance like this one:

String perf = "The singers performing tonight are: \n\t Paolo Nutini \n\t

Seth MacFarlane\n\t John Mayer";

When printed in the console the text will be formatted and will look like this:
The singers performing tonight are:

 Paolo Nutini

 Seth MacFarlane

 John Mayer

That last thing that should be mentioned about Java String is that in JDK 15, support for text blocks
was introduced. This means that instead of splitting a big String value into multiple smaller values written
on multiple lines and concatenating them to keep the code readable, you can now declare a single block of
text and assign it to a String reference. Before Java 15, if you wanted to declare a multiline string value you
had a few options, which included concatenations (using the ‘+’ operator), explicit line terminators, and
delimiters. A few of these options are depicted in Listing 5-28. Depending on the solution you are building,
you can choose any of them, and a discussion about the ef�iciency and drawbacks is out of scope for this
book.

package com.apress.bgn.five;

import java.io.PrintWriter;

import java.io.StringWriter;

public class MultiLineDemo {

 public static void main(String... args) {

 // this statement extracts the newline character specific to the

 // operating system

 String newLineCh = System.getProperty("line.separator");

 // method 1: simple concatenation using the '+' operator

 String multilineStr = "line one of the text block" +

 newLineCh +

 "line two of the text block" +

 newLineCh +

 "last line of the text block" ;

 // or method 2 using `String#concat(..)` method

 multilineStr = "line one of the text block"

 .concat(newLineCh)

 .concat("line two of the text block")

 .concat(newLineCh)

 .concat("last line of the text block") ;

 // or method 3 using `String.join` utility method

 multilineStr = String.join("line one of the text block" ,

 newLineCh ,

 "line two of the text block" ,

 newLineCh ,

 "last line of the text block");

 // or method 4 using a StringBuffer instance

 multilineStr = new StringBuffer("line one of the text block")

 .append(newLineCh)

 .append("line two of the text block")

 .append(newLineCh)

 .append("last line of the text block").toString();

 // or method 5 using a StringBuilder instance

 multilineStr = new StringBuilder("line one of the text block")

 .append(newLineCh)

 .append("line two of the text block")

 .append(newLineCh)

 .append("last line of the text block").toString();

 // or method 5 using a StringWriter instance

 StringWriter stringWriter = new StringWriter();

 stringWriter.write("line one of the text block");

 stringWriter.write(newLineCh);

 stringWriter.write("line two of the text block");

 stringWriter.write(newLineCh);

 stringWriter.write("last line of the text block");

 multilineStr = stringWriter.toString();

 // or method 6 using a StringWriter and PrintWriter instance

 stringWriter = new StringWriter();

 PrintWriter printWriter = new PrintWriter(stringWriter);

 printWriter .println("line one of the text block");

 printWriter.println("line two of the text block");

 printWriter.println("last line of the text block");

 multilineStr = stringWriter.toString();

 System.out.println(multilineStr);

 }

}

Listing 5-28 Multiline Java String Value Before JDK 15

 StringBuffer represents a thread-safe, mutable sequence of characters. This means any action on
a StringBuffer is executed after single access is ensured. This is why using StringBuffer to
concatenate string is slower than using StringBuilder, which is its non–thread-safe equivalent. So
when designing your code, unless there is a risk for your string concatenation block to be executed by
multiple threads in parallel, go with StringBuilder.

In JDK 15, support for declaring text blocks was added which enables to embed multiline texts in the
code exactly as they are without modifying them to add line terminators, delimiters or concatenation
operators. A text block is thus an alternative form of Java String representation that starts with three double-
quote characters followed by a line terminator and ends with three double-quote characters. So the previous
multiline text can be written the new syntax, as shown next:

String multilineStr = """

 line one of the text block

 line two of the text block

 last line of the text block

 """;

The new syntax is designed only for declaring multiline texts, so it cannot be used to declare single line
texts. Doing so will result in a compile error. The same will happen if the starting three double-quote
characters are followed by text instead of the expected line terminator. Figure 5-18 depicts two wrong ways
to declare multiline text blocks, and the explanation provided by the IDE.

Figure 5-18 Invalid syntax for declaring multiline texts

A few mentions:

The "(double-quote) does not need to be escaped in a multiline text block unless there is three of
them grouped together within the value. In this case the compiler might be a little confused as to where
the text block ends, so in this case at least one of them must be escaped.
When the lines that make the text block need to be indented, either spaces or tabs should be used; using
them both might lead to unpredictable results (e.g., irregular indentation can break a YAML con�iguration)
Text blocks support two extra escape sequences:
\<line-terminator> suppresses the inclusion of an implicit new line character. For example, a text
block declared as shown previously is equivalent to:

String multilineStr = "line one of the text block" +

 "\n" +

 "line two of the text block" +

 "\n" +

 "last line of the text block" +

 "\n" ;

If the last new line is not needed there are two options. The text block can have the terminator
speci�ied inline with the last line of text.

String multilineStr = """

 line one of the text block

 line two of the text block

 last line of the text block""";

But this is not recommended, since it might affect indentation. The recommended way is to use the \
<line-terminator> escape character since this better frames the text block and allows the closing
delimiter to manage indentation.

String multilineStr = """

 line one of the text block

 line two of the text block

 last line of the text block\

 """;

\s escape sequence translates to space. This is useful when we want some spaces at end of the lines in the
text block.

String multilineStr = """

 line one of the text block\s

 line two of the text block\s

 last line of the text block\

 """;

In the of�icial Oracle documentation there is section dedicated to the new multiline blocks added in JDK
15. If you ever need more information, this is the best place to look:
https://docs.oracle.com/en/java/javase/17/text-blocks/index.html - new-escape-
sequences.

Wrapper Classes for Primitive Types
It was mentioned in the primitive section of this chapter that each primitive type has a corresponding
reference type. Before covering each of them and why they are needed, please take a look at Table 5-2.

Table 5-2 Java Primitive Types and Equivalent Reference Types

Primitive Type Reference Type

char java.lang.Character

boolean java.lang.Boolean

byte java.lang.Byte

short java.lang.Short

int java.lang.Integer

long java.lang.Long

float java.lang.Float

double java.lang.Double

The Java wrapper classes wrap a value of the primitive type with the same name. In addition, these
classes provide methods for converting primitive values to String and vice-versa, as well as constants and
methods useful when dealing with primitive types, that need to be treated as objects. The numeric wrapper
classes are related, all of them extend the Number class, as depicted in Figure 5-19.

Figure 5-19 Java primitive and equivalent reference types

The following code samples will use mostly the Integer class, but the other numeric wrapper classes
can be used in a similar way. Converting a primitive value to its equivalent reference is called boxing; the
reverse process is called unboxing. JVM does these conversions automatically in most situations, the term
autoboxing was introduced to refer to the process of boxing, while for some reason automatic unboxing is
still called unboxing.

https://docs.oracle.com/en/java/javase/17/text-blocks/index.html

The code sample depicted in Listing 5-29, contains a few operations with Integer and int values.

package com.apress.bgn.five;

public class WrapperDemo {

 public static void main(String... args) {

 // upper interval boundary for int

 Integer max = Integer.MAX_VALUE;

 System.out.println(max);

 //autoboxing Integer -> int

 int pmax = max;

 //autoboxing int -> Integer

 Integer io = 10;

 //creating primitive utility method

 //exception is thrown, if string is not a number

 int i1 = Integer.parseInt("11");

 //constructor deprecated in Java 9

 //exception is thrown, if string is not a number

 Integer i2 = new Integer("12");

 //exception is thrown, if string is not a number

 Integer i3 = Integer.valueOf("12");

 //convert int into to String

 String s0 = Integer.toString(13);

 //convert int to float

 float f0 = Integer.valueOf(14).floatValue();

 //creating string with binary representation of number 9 (1001)

 String s1 = Integer.toBinaryString(9);

 //introduced in Java 1.8

 Integer i4 = Integer.parseUnsignedInt("+15");

 //method to add to integers

 int sum = Integer.sum(2, 3);

 //method to get the bigger value

 int maximum = Integer.max(2, 7);

 }

}

Listing 5-29 Autoboxing and Unboxing in Action

The Character and Boolean types are a little different because these types are not numeric, so they
cannot be converted to any numeric values. They cannot be converted one to another either. Oracle provides
good documentation for its classes, so if you are curious about using these two types just check out the
of�icial JDK API documentation at
https://docs.oracle.com/en/java/javase/17/docs/api/index.html.

Date Time API
A lot of applications make use of calendar date types to print the current date, deadlines, and birthdays. No
matter what application you will decide to build, you will most likely need to use calendar dates. Until Java 8,

https://docs.oracle.com/en/java/javase/17/docs/api/index.html

the main class to model a calendar date was java.util.Date. There are a few problems with this class
and others involved in handling calendar dates. But before we get into that, take a look at Listing 5-30 and
check out how we can get the current date and create a custom date and print certain details.

package com.apress.bgn.five;

import java.text.SimpleDateFormat;

import java.util.Date;

public class DateDemo {

 public static void main(String... args){

 SimpleDateFormat sdf = new SimpleDateFormat("dd-MM-yyyy");

 Date currentDate = new Date();

 System.out.println("Today: " + sdf.format(currentDate));

 //deprecated since 1.1

 Date johnBirthday = new Date(77, 9, 16);

 System.out.println("John’s Birthday: " + sdf.format(johnBirthday));

 int day = johnBirthday.getDay();

 System.out.println("Day: " + day);

 int month = johnBirthday.getMonth() + 1;

 System.out.println("Month: " + month);

 int year = johnBirthday.getYear();

 System.out.println("Year: " + year);

 }

}

Listing 5-30 java.util.Date Code Sample

The get the current date set on your system is simple; just call the default constructor of the Date class:

Date currentDate = new Date();

The contents of the currentDate can be displayed directly, but usually an instance of
java.text.SimpleDateFormat is used, to format the date to a pattern that is country speci�ic or just
more readable. The formatter can also be used to convert a String with that speci�ic format intro a Date
instance. If the text does not match the pattern of the formatter, a speci�ic exception will be thrown (type:
java.text.ParseException)

try {

 Date johnBirthday = sdf.parse("16-10-1977");

} catch (ParseException e) {

 // do something with the exception

}

To create a Date instance from the numbers representing a date (year, month, and day), a constructor
that takes those values as arguments can be used. That constructor, however, has been deprecated since Java
1.1, so some developers prefer using the sdf.parse(..) method instead. The constructor has a few
particularities regarding its arguments:

the year argument must be the year value –1900.
the months are counted from 0, so the month provided as argument must be the month we want –1.

The code to construct a Date from the numeric values for year, month, and day is depicted here:

//deprecated since 1.1

Date johnBirthday = new Date(77, 9, 16);

System.out.println("John's Birthday: " + sdf.format(johnBirthday));

//it prints: John’s Birthday: 16-10-1977

If we want to extract the year, month and day of the month from the date, there are methods for that,
only again a peculiarity: the method to extract the day of the month is named getDate() . Also keep in
mind, since months are numbered from 0 to 11, to the real month value you have to add 1 to the result
returned by getMonth() . Listing 5-31 shows the code to create a Date instance, extract, then day, month,
and year and print them.

package com.apress.bgn.five;

import java.text.ParseException;

import java.text.SimpleDateFormat;

import java.util.Date;

public class PrintDateDemo {

 public static void main(String... args) {

 try {

 SimpleDateFormat sdf = new SimpleDateFormat("dd-MM-yyyy");

 Date johnBirthday = sdf.parse("16-10-1977");

 System.out.println("John’s Birthday: " +

sdf.format(johnBirthday));

 //day of the month

 int day = johnBirthday.getDate();

 System.out.println("Day: " + day);

 int month = johnBirthday.getMonth() + 1;

 System.out.println("Month: " + month);

 int year = johnBirthday.getYear();

 System.out.println("Year: " + year);

 } catch (ParseException e) {

 e.printStackTrace();

 }

 }

}

Listing 5-31 Printing Components of a Calendar Date

 The java.util.Data class has two methods that can be easily confused.

The getDate() method returns the day of the month of a Date object.

The getDay() method returns the day of the week of a Date object.

Both are deprecated as of JDK version 1.1, and better, less confusing ways to extract that information are
presented later in this section.

If you inspect the demo classes of this section in the IntelliJ IDEA editor, you will notice that some
constructors and methods are written with a strikethrough font. This means that they are deprecated and
might be removed in future versions of Java and thus they should not be used. This is why there is another

way to do all of this: by using the java.util.Calendar class. The code to do the same as in Listing 5-
31, but using the Calendar class is depicted in Listing 5-32.

package com.apress.bgn.five;

import java.text.SimpleDateFormat;

import java.util.Calendar;

import java.util.Date;

import java.util.GregorianCalendar;

public class CalendarDateDemo {

 public static void main(String... args) {

 SimpleDateFormat sdf = new SimpleDateFormat("dd-MM-yyyy");

 Calendar calendar = new GregorianCalendar();

 Date currentDate = calendar.getTime();

 System.out.println("Today: " + sdf.format(currentDate));

 calendar.set(1977, 9, 16);

 Date johnBirthday = calendar.getTime();

 System.out.println("John’s Birthday: " + sdf.format(johnBirthday));

 int day = calendar.get(Calendar.DAY_OF_MONTH);

 System.out.println("Day: " + day);

 int month = calendar.get(Calendar.MONTH);

 System.out.println("Month: " + month);

 int year = calendar.get(Calendar.YEAR);

 System.out.println("Year: " + year);

 }

}

Listing 5-32 Code Sample for Handling Calendar Dates Using the Calendar Class

Unfortunately some of the peculiarities mentioned earlier remain, as the central class for representing
dates is still the java.util.Date , but at least we are not using deprecated methods anymore.

The java.util.Date class and the java.text.SimpleDateFormat class are not thread safe, so
in complex applications with multiple execution threads, developers must synchronize access to those type
of objects explicitly. Objects of those types are not immutable and working with timezones is a pain. This is
the main reason why in Java 8 a new API to model calendar date operations was introduced that is better
designed, and date instances are thread-safe and immutable.

The central classes for the API are java.time.LocalDate and java.time.LocalDateTime, used
to model calendar dates and calendar dates with time. Listing 5-33 shows how to get the current date and
how to create a custom date looks like with the new API.

package com.apress.bgn.five;

import java.time.LocalDate;

import java.time.LocalDateTime;

import java.time.Month;

public class NewCalendarDateDemo {

 public static void main(String... args) {

 LocalDateTime currentTime = LocalDateTime.now();

 System.out.println("Current DateTime: " + currentTime);

 LocalDate today = currentTime.toLocalDate();

 System.out.println("Today: " + today);

 LocalDate johnBd = LocalDate.of(1977, Month.OCTOBER, 16);

 System.out.println("John’s Birthday: " + johnBd);

 int day = johnBd.getDayOfMonth();

 System.out.println("Day: " + day + ", " + johnBd.getDayOfWeek());

 int month = johnBd.getMonthValue();

 System.out.println("Month: " + month + ", " + johnBd.getMonth());

 int year = johnBd.getYear();

 System.out.println("Year: " + year);

 }

}

Listing 5-33 Code Sample for Handling Calendar Dates Using the New DateTime API Introduced in the JDK 8

To get the current date and time a static method named now() is called, which returns an instance of
type LocalDateTime. This instance can be used to get the current date by calling toLocalDate(). This
method returns the current date as an instance of type LocalDate. This class has a toString() method
that prints the formatted date according to the default Locale set on the system. To create a custom date, the
actual year and day of month can be used as arguments, and the month can be speci�ied using one of the
values of the java.time.Month enum. Extracting information regarding a date can be done easily by
calling methods with intuitive names. Just look at the getDayOfMonth() and getDayOfWeek() method
s in the previous snippet. Their name re�lects exactly what data they are returning. As you can see, classes
LocalDate and LocalDateTime simplify the development where timezones are not required. Working
with time zones is quite an advanced subject, so it won’t be covered within this book.

Collections
One of the most important family of types in JDK that you will probably use a lot are the collections. Classes
and interfaces in the collections family are used to model common data collections such as sets, lists, and
maps. All the classes are stored under package java.util and can be split into two categories: tuples and
collections of key-value pairs. The tuples are unidimensional sets of data: if the values are unique, any class
implementing the java.util.Set interface should be used to model them; if not, any class implementing
the java.util.List interface should be used. For collections of key-value pairs classes, implementing
java.util.Maps should be used. Starting with Java version 1.5 collections have become generic, which
allowed developers more precision and security when working with them. Before Java 1.5, collections could
contain any type of objects. Developers can still write code like the one depicted in Listing 5-34:

package com.apress.bgn.five;

import com.apress.bgn.four.classes.Gender;

import com.apress.bgn.four.hierarchy.Performer;

import java.util.ArrayList;

import java.util.List;

public class CollectionsBasicDemo {

 public static void main(String... args) {

 List objList = new ArrayList();

 objList.add("temp");

 objList.add(Integer.valueOf(5));

 objList.add(new Performer("John", 40, 1.91f, Gender.MALE));

 }

}

Listing 5-34 Code Using Collections Up to Java 1.5

You probably do not see any problem with this; the compiler sure doesn’t, but when you iterate this list it
is quite dif�icult to determine which objects are you handling without complicated code analyzing the type of

each object. This was mentioned before at the end of Chapter 4 when generics were introduced. The code to
iterate the list and process the elements differently based on their type is depicted in Listing 5-35, just to
show you why this is a bad idea and bad practice in this day and age of Java.

package com.apress.bgn.five;

import com.apress.bgn.four.classes.Gender;

import com.apress.bgn.four.hierarchy.Performer;

import java.util.ArrayList;

import java.util.List;

public class CollectionsBasicDemo {

 public static void main(String... args) {

 List objList = new ArrayList();

 objList.add("temp");

 objList.add(Integer.valueOf(5));

 objList.add(new Performer("John", 40, 1.91f, Gender.MALE));

 for (Object obj : objList) {

 if (obj instanceof String) {

 System.out.println("String object = " + obj.toString());

 } else if (obj instanceof Integer) {

 Integer i = (Integer)obj;

 System.out.println("Integer object = " + i.intValue());

 } else {

 Performer p = (Performer) obj;

 System.out.println("Performer object = " + p.getName());

 }

 }

 }

}

Listing 5-35 More Code Using Collections Up to Java 1.5

Maybe this is not clear to you now, but to be able to use the contents of the list you have to know exactly
all the types of the objects that were put in the list. This might be doable when you are working alone on a
project, but in a bigger project, when multiple developers are involved, this can get messy really fast.

This is where generics come to help. Generics help de�ine at compile time what types of objects should
be put into a collection, and thus if the wrong object type is added to the collection, the code no longer
compiles. Both lists and sets implement the same interface: java.util.Collection<T>, which means
their API is almost the same. The simpli�ied hierarchy of the collections containing the classes and interfaces
most used in programming is depicted in Figure 5-20.

Figure 5-20 Collection hierarchy

Listing 5-36 depicts the creation of a List of String values, and the loop statement needed to traverse
it and print its elements.

package com.apress.bgn.five;

import java.util.ArrayList;

import java.util.List;

public class GenericListDemo {

 public static void main(String... args) {

 List<String> stringList = new ArrayList<String>();

 stringList.add("one");

 stringList.add("two");

 stringList.add("three");

 for (String s : stringList) {

 System.out.println(s);

 }

 }

}

Listing 5-36 Code Using Collections Starting with Java 1.5

A List contains an unsorted collection of nonunique data, null elements included. In the previous
example we declared a reference of type List<T> and an object of type ArrayList<T>. We did this
because as all implementations have the same API; we could easily switch ArrayList<T> with
LinkedList<T> and the code will still work.

List<String> stringList = new ArrayList<String>();

stringList = new LinkedList<String>();

 Declaring abstract references is a good programming practice, because it increases the �lexibility of
your code.

The syntax in the previous examples is pre–Java 1.7. In Java1.7 the <> (diamond operator) was
introduced. This allowed more simpli�ication of collections initializations, because it only required declaring
the type of the elements in the list in the reference declaration. So the two lines in the previous code snippet
become:

List<String> stringList = new ArrayList<>();

stringList = new LinkedList<>();

Every new Java version has added changes to the collection framework starting with Java 1.5. In Java 1.8,
support for lambda expression has been added by adding a default method named forEach in the
java.lang.Iterable<T> interface (Figure 5-20), which is extended by the
java.lang.Collection<T>. So the code to print all the values in the list, like we did previously using a
for loop, can be replaced with:

stringList.forEach(element -> System.out.println(element));

In Java 9, yet another improvement was introduced: factory methods for collections. Our collection was
populated with elements by repeatedly calling add(..), which is a little redundant, especially since we
have the full collection of elements we want to put in the list. That is why in Java 9 methods to create
collection objects in one line of code were introduced. For example:

List<String> stringList = List.of("one", "two", "three");

The resulting List<T> is an immutable collection: it can no longer be modi�ied, and elements cannot be
added or removed from it.

Moving even further close to the present, in Java 10 support for local variable type inference was added,
which means that we no longer have to explicitly specify the reference type because it will be automatically
be inferred based on the object type, so the following declaration:

List<String> stringList = List.of("one", "two", "three");

This becomes:

var stringList = List.of("one", "two", "three");

Similar code can be written with Set<T>, HashSet<T>, and TreeSet<T>, and similar methods exist
for this family of classes as well.

 Collections is a common topic at Java entry-level position interviews, so don’t be surprised if you are
asked what the difference is between a List<T> and Set<T>.

When working with Set<T> implementations, you just have to make sure the objects added to the set
have equals(..) and hashCode() implemented correctly. The reason for this is that Set<T> models
the mathematical set abstraction that allows no duplicate elements.

The equals(..) indicates whether the object passed as an argument is “equal to” the current instance.
The default implementation provided by the Object class considers two objects to be equal if they are
stored in the same memory location.

The hashCode(..) returns an integer representation of the object memory address. The default
implementation provided by the Object class returns a random integer that is unique for each instance.
This value might change between several executions of the application. This method is useful when objects
are used as keys in hash tables, because it optimizes retrieving elements from them. If you want to learn

more about hash tables, the Internet is your oyster; as for Java, a hash table can be modelled by an instance
of java.util.HashMap<K,V>.

As per the of�icial documentation, if two objects are equal, then calling hashCode() on each of them
must yield the same result. But it is not a must for two unequal objects to have different hashCodes.

This being said, the Ball class introduced earlier will be used to create some ball instances; add them
into a Set. The code sample in Listing 5-37 shows a version of the Ball class containing proper
implementations for the equals(..) and hashCode();

package com.apress.bgn.five;

import java.util.HashSet;

import java.util.Set;

public class SetDemo {

 public static void main(String... args) {

 Set<Ball> ballSet = new HashSet<>();

 ballSet.add(new Ball(2, "RED", "rubber"));

 ballSet.add(new Ball(4, "BLUE", "cotton"));

 System.out.println("Set size: " + ballSet.size());

 Ball duplicate = new Ball(2, "RED", "rubber");

 boolean wasAdded = ballSet.add(duplicate);

 if(!wasAdded) {

 System.out.println("Duplicate ball not added to the set. ");

 System.out.println("Set size: " + ballSet.size());

 }

 }

}

class Ball {

 private int diameter;

 private String color;

 private String material;

 @Override

 public boolean equals(Object o) {

 if (this == o) return true;

 if (o == null || getClass() != o.getClass()) return false;

 Ball ball = (Ball) o;

 return diameter == ball.diameter &&

 color.equals(ball.color) &&

 material.equals(ball.material);

 }

 @Override

 public int hashCode() {

 int result = 17 * diameter;

 result = 31 * result + (color == null ? 0 : color.hashCode());

 result = 31 * result + (material == null ? 0 : material.hashCode());

 return result;

 }

 // other code omitted

}

Listing 5-37 Basic equals(..) and hashCode() Implementations

Running the code in the previous listing produces the following output:

Set size: 2

Duplicate ball not added to the set.

Set size: 2

Before Java 1.7 developers had to write equals(..) and hashCode() implementations similar to the
ones in the previous listing for all classes that might have been used in a Set<T> or as key in a Map<K,V>.
The implementations have to be based on the values of the most important �ields in the class. The 17 and 31
are just two random integers used to compute the hashCode value.

In Java 1.7 class java.util.Objects was introduced providing utility methods to make
implementing these methods easier. Listing 5-38 depicts equals(..) and hashCode() implementations
after Java 1.7.

package com.apress.bgn.five;

import java.util.Objects;

class Ball {

 private int diameter;

 private String color;

 private String material;

 @Override

 public boolean equals(Object o) {

 if (this == o) return true;

 if (o == null || getClass() != o.getClass()) return false;

 Ball ball = (Ball) o;

 return diameter == ball.diameter &&

 Objects.equals(color, ball.color) &&

 Objects.equals(material, ball.material);

 }

 @Override

 public int hashCode() {

 return Objects.hash(diameter, color, material);

 }

 // other code omitted

}

Listing 5-38 Basic equals(..) and hashCode() Implementations After Java 1.7

Starting with Java 14, things became even simpler because now a class like Ball can be written as a
record, as depicted in Listing 5-39.

package com.apress.bgn.five;

import java.util.HashSet;

import java.util.Set;

record Ball(int diameter, String colour, String material) {}

public class RecordSetDemo {

 public static void main(String... args) {

 // same as Listing 5-37

 }

}

Listing 5-39 Class Ball Written as a Record to Avoid Implementing equals(..) and hashCode()

Executing the code in the previous listing yields the same result as before, thus proving that the
equals(..) method generated by the Java compiler is valid.

Map<K,V> implementations come with a few differences, because they model collections of key-value
pairs. The code in Listing 5-40 depicts the creation and initialization of a map that uses keys of type Ball
and values of type Integer. You can imagine this map instance to represent the number of identical balls in
a bucket.

package com.apress.bgn.five;

import java.util.HashMap;

import java.util.Map;

public class MapDemo {

 public static void main(String... args) {

 Map<Ball, Integer> ballMap = new HashMap<Ball, Integer>();

 ballMap.put(new Ball(2, "RED", "rubber"), 5);

 ballMap.put(new Ball(4, "BLUE", "cotton"), 7);

 for (Map.Entry<Ball, Integer> entry : ballMap.entrySet()) {

 System.out.println(entry.getKey() + ": " + entry.getValue());

 }

 }

}

Listing 5-40 Map<Ball, Integer> Code Sample

As you can notice from the for loop, you can infer that a map is actually a collection of Map.Entry<K,
V> elements. If we were to move ahead to the Java 1.7 syntax, the declaration of the map becomes simpler by
applying the <>(diamond) operator:

Map<Ball, Integer> ballMap = new HashMap<>();

Moving further to Java 1.8, traversal and printing values in map becomes more practical as well, because
of the introduction of the forEach(..) method and lambda expressions:

ballMap.forEach((k,v) -> System.out.println(k + ": " + v));

And in Java 9, declaring and populating a map becomes easier too.

Map<Ball, Integer> ballMap = Map.of(new Ball(2, "RED", "rubber"), 5, new

Ball(4, "BLUE", "cotton"), 7);

Java 10 adds in var to simplify the declaration even more.

var ballMap = Map.of(new Ball(2, "RED", "rubber"), 5, new Ball(4, "BLUE",

"cotton"), 7);

Another thing that needs to be mentioned before ending this section is what happens when a key-pair
value is added to the map and the key already exists. As you probably expect, the existing key-pair in the
map is overwritten. Before Java 8, writing code to prevent this situation when a set of values is lost required
checking if the key is present, and if not present then adding the new key-pair, as depicted in Listing 5-41.

package com.apress.bgn.five;

import java.util.HashMap;

import java.util.Map;

public class MapDemo {

 public static void main(String... args) {

 Map<Ball, Integer> ballMap = new HashMap<>();

 Ball redBall = new Ball(2, "RED", "rubber");

 ballMap.put(redBall, 5);

 ballMap.put(new Ball(4, "BLUE", "cotton"), 7);

 //ballMap.put(redBall, 3); // this overrides entry <redBall, 5>

 if(!ballMap.containsKey(redBall)) {

 ballMap.put(redBall, 3);

 }

 for (Map.Entry<Ball, Integer> entry : ballMap.entrySet()) {

 System.out.println(entry.getKey() + ": " + entry.getValue());

 }

 }

}

Listing 5-41 Preventing Key-Pair Overwriting Before Java 8

In Java 8 a practical set of utility methods were added to the Map<K,V> interface to simplify code
written using maps, including the method putIfAbsent(..) depicted inListing 5-42, which replaces the
statement marked in the previous code listing.

package com.apress.bgn.five;

import java.util.HashMap;

import java.util.Map;

public class MapDemo {

 public static void main(String... args) {

 Map<Ball, Integer> ballMap = new HashMap<>();

 Ball redBall = new Ball(2, "RED", "rubber");

 ballMap.put(redBall, 5);

 ballMap.put(new Ball(4, "BLUE", "cotton"), 7);

 ballMap.putIfAbsent(redBall, 3);

 for (Map.Entry<Ball, Integer> entry : ballMap.entrySet()) {

 System.out.println(entry.getKey() + ": " + entry.getValue());

 }

 }

}

Listing 5-42 Preventing Key-Pair Overwriting Before Java 8

The JDK classes for working with collections cover a wide range of functionality, such as sorting,
searching, merging collections, intersections, conversions to/from arrays, and so on. As the book advances
the context of the code samples will widen, and we will be able to use collections to solve real-world
problems.

Concurrency Speci�ic Types
Previously in the book it was mentioned from time to time that a Java program can have more than one
execution thread. By default, when a Java program is executed, a thread is created for the code that is called
from the main(..) method. A few other utility threads are created and executed in parallel for JVM related
things. These threads can easily be accessed using static utility methods de�ined in the

java.lang.Thread class. The code in Listing 5-43 does just that: it extracts the references to the Thread
instances and prints their name to the console.

package com.apress.bgn.five;

public class ListJvmThreads {

 public static void main(String... args) {

 var threadSet = Thread.getAllStackTraces().keySet();

 var threadArray = threadSet.toArray(new Thread[threadSet.size()]);

 for (int i = 0; i < threadArray.length; ++i) {

 System.out.println("thread name: " + threadArray[i].getName());

 }

 }

}

/// Output

thread name: main

thread name: Finalizer

thread name: Common-Cleaner

thread name: Monitor Ctrl-Break

thread name: Signal Dispatcher

thread name: Reference Handler

thread name: Notification Thread

Listing 5-43 Code Used to Show All Threads Necessary to Run a Simple Java Application and Its Output

The output shown in Listing 5-43 was produced when running the code on JDK 17-ea on a macOS
computer in IntelliJ IDEA. The threads listed have the following responsibilities:

The thread named main is the thread that executes the developer written code. The developer can write
code to start its own threads from the main thread.
The thread named Reference Handler is the thread that takes unused objects and adds them to a
queue to be evicted.
The thread named Finalizer is a low priority JVM thread that executes the finalize() method of
each object in a queue waiting to be evicted from memory. This method can be overwritten by developers
to explicitly free resources linked to objects about to be evicted.
The thread named Common-Cleaner is also a low priority JVM thread in charge of lightweight cleanup
of object without using �inalization.
The thread named Monitor Ctrl-Break is a thread created by IntelliJ IDEA, since the code is executed
using this editor.
The thread named Signal Dispatcher handles native signals sent by operating system to the JVM.
The thread named Notification Thread is a thread handling noti�ication sent by operating system
to the JVM.

Except main, Monitor Ctrl-Break (which is not a JVM application thread), Common-Cleaner, and
all the other three are system threads that ensure the JVM collaborates with the operating system. Except for
main, all other threads are called daemon threads. They have low priority, and they provide services to
user threads, which is what the main thread is. These are the only two types of threads in Java.

The developer can write code to start its own threads from the main thread. The most simple way to
create a custom thread is to create a class that extends the Thread class.

The Thread class implements an interface named Runnable that declares a single method named
run().

The Thread class declares a method named start(). When this method is called, the body of the
run() method is executed in a separate execution thread than the one calling start().5

Thus, when extending the Thread class or implementing the Runnable interface directly, the run()
method must be overridden.

The example in Listing 5-44 depicts a class named RandomDurationThread . The contents of the
run() method pauses the execution at random times by calling the Thread.sleep(..) utility method.
The body of the method is wrapped in two lines of code that print the name of the thread: a starting message
and an ending message. The Thread.sleep(..) ensures that each thread execution has a different
duration, so that we can clearly see they are executed in parallel.

package com.apress.bgn.five;

public class RandomDurationThread extends Thread {

 @Override

 public void run() {

 System.out.println(this.getName() + " started...");

 for (int i = 0; i < 10; ++i) {

 try {

 Thread.sleep(i * 10);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 System.out.println(this.getName() + " ended.");

 }

}

Listing 5-44 Code Sample Declaring Threads with Random Execution Durations By Extending the Thread Class

The code using the RandomDurationThread to create multiple threads and starting them is shown in
Listing 5-45.

package com.apress.bgn.five;

public class MultipleUserThreadsDemo {

 public static void main(String... args) {

 for (int i = 0; i < 10; ++i) {

 new RandomDurationThread().start();

 }

 }

}

Listing 5-45 Code Sample to Run Multiple Threads in Parallel

In the previous code listing, 10 instances of class RandomDurationThread were created and the
start() method was called for each of them. When the previous code is executed a log similar to the one
depicted in Listing 5-46 should be printed in the console.

Thread-6 started...

Thread-4 started...

Thread-2 started...

Thread-1 started...

Thread-3 started...

Thread-7 started...

Thread-5 started...

Thread-0 started...

Thread-8 started...

Thread-9 started...

Thread-2 ended.

Thread-0 ended.

Thread-4 ended.

Thread-3 ended.

Thread-8 ended.

Thread-1 ended.

Thread-9 ended.

Thread-7 ended.

Thread-6 ended.

Thread-5 ended.

Listing 5-46 Output Resulted By Running the Code in Listing 5-45

As it is obvious from this output, the threads start and end in a random order.
Another way to create threads is by creating a class that implements the Runnable interface . This is

useful when we want to extend another class, or, considering that the Runnable declares a single method,
lambda expressions can be used too. Listing 5-47 shows the equivalent Runnable implementation of the
RandomDurationThread.

package com.apress.bgn.five;

public class RandomDurationRunnable implements Runnable {

 @Override

 public void run() {

 System.out.println(Thread.currentThread().getName() + "

started...");

 for (int i = 0; i < 10; ++i) {

 try {

 Thread.sleep(i * 10);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 System.out.println(Thread.currentThread().getName() + " ended.");

 }

}

Listing 5-47 Code Sample Declaring Threads with Random Execution Durations By Implementing the Runnable Interface

Because we no longer have access to the name of the thread, to print it we must use another utility
method called Thread.currentThread() to retrieve a reference to the current thread in execution so
we can get its name.

The Thread class provides a constructor with a parameter of type Runnable, which means it can be
called with any argument of a type that implements Runnable. Thus to create threads using our
RandomDurationRunnable declared previously, code similar to the one in Listing 5-48 can be written.

package com.apress.bgn.five;

public class RunnableDemo {

 public static void main(String... args) {

 for (int i = 0; i < 10; ++i) {

 new Thread(new RandomDurationRunnable()).start();

 }

 }

}

Listing 5-48 Code Sample to Run Multiple Threads in Parallel Using a Class Implementing Runnable

Running the code in the previous listing produces an output just as random as the one in Listing 5-46.
It was previously mentioned that this particular case is a good candidate for using lambda expressions,

because Runnable can be implemented on the spot. This means that the code in Listing 5-48 and Listing 5-

47 can be combined as depicted in Listing 5-49.

package com.apress.bgn.five;

import static java.lang.Thread.currentThread;

import static java.lang.Thread.sleep;

public class LambdaThreadsDemo {

 public static void main(String... args) {

 for (int i = 0; i < 10; ++i) {

 new Thread(

 //Runnable implemented on the spot

 () -> {

 System.out.println(currentThread().getName() + "

started...");

 for (int j = 0; j < 10; ++j) {

 try {

 sleep(j * 10);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 System.out.println(currentThread().getName() + "

ended.");

 }).start();

 }

 }

}

Listing 5-49 Code Sample to Run Multiple Threads in Parallel Using Lambda Expressions

Java provides thread management classes that can create and manage threads, so the developer mustn’t
declare the threads explicitly. The concurrency framework is a subject too advanced for this book, but if this
section has made you so curious and you want to know more, you can have a look at the Oracle Concurrency
tutorial here:
https://docs.oracle.com/javase/tutorial/essential/concurrency/index.html.

Summary
In this chapter we learned how memory for a Java program is administered by the JVM and the basics of the
most-used Java data types. A few important details that should remain with you from this chapter are listed
here:

There are two types of memory managed by the JVM: stack and heap.
The difference between primitive and reference types.
Primitive values are stored in the stack memory, and objects values are stored in the heap.
There are eight primitive data types in Java: boolean, char, short, byte, int, long, float, double.
References can only be of the super-type of an assigned object.
The size of an array is de�ined when it is created and it cannot be changed afterward.
In Java String instances are immutable, which means they cannot be changed once created.
If calendar dates need to be handled, use the new DateTime API.
null is useful and powerfull.
Collections can group objects types together in tuples or key-value pairs.
Concurrency in Java is fun in small doses.

Some examples in this chapter might seem complicated, but do not be discouraged. It is dif�icult to
explain certain concepts without providing working code that you can execute, test, and even modify
yourself. Unfortunately, this requires the use of concepts that will be introduced in later chapters (such as

https://docs.oracle.com/javase/tutorial/essential/concurrency/index.html

1

2

3

4

5

for and if statements). Just make a note of every concept that it is not clear now and the page number, and
return to this chapter after you read about the concept in detail later in the book.

Footnotes
A complete list of the symbols and their meaning can be found at FileFormat info, “Complete Character List for UTF-16,”

https://www.fileformat.info/info/charset/UTF-16/list.htm, accessed October 15, 2021.

OCA and OCP certi�ication details can be found at Oracle, “Oracle Certi�ication,”

https://www.oracle.com/uk/corporate/features/oracle-certification.html, accessed October 15, 2021.

An interesting comparison of sorting algorithms, if you are interested, can be found at Toptal, “Sorting Algorithms Animations,”

https://www.toptal.com/developers/sorting-algorithms, accessed October 15, 2021.

If you want to check if you understood memory management and strings correctly, you are welcome to draw your own picture and send it to

the author for a review and a technical discussion.

The internals of thread management is much more complicated, but this section will just scratch the surface.

https://www.fileformat.info/info/charset/UTF-16/list.htm
https://www.oracle.com/uk/corporate/features/oracle-certification.html
https://www.toptal.com/developers/sorting-algorithms

(1)

© Iuliana Cosmina 2022
I. Cosmina, Java 17 for Absolute Beginners
https://doi.org/10.1007/978-1-4842-7080-6_6

6. Operators

Iuliana Cosmina1

Edinburgh, UK

The previous chapters have covered basic concepts of Java programming. You were taught how to
organize your code, how your �iles should be named, and which data types you can use, depending
on the problem you are trying to solve. You were taught how to declare �ields, variables, and
methods and how they were stored in memory, to help you design your solutions so the resource
consumption will be optimal.

After declaring variables, in this chapter you will learn to combine them using operators. Most
Java operators are the ones you know from math, but because programming involves other types
than numeric, extra operators with speci�ic purposes were added. In Table 6-1, all Java operators
are listed with their category and their scope.

Table 6-1 Java Escape Sequences

Category Operator Scope

casting (type) Explicit type conversion.

unary, post�ix expr++, expr– Post increment/decrement.

unary, pre�ix ++expr, –expr Pre increment/decrement.

unary, logical ! Negation.

unary, bitwise ~ Bitwise complement Performs a bit-by-bit reversal of an
integer value.

multiplicative,
binary

*, /, % For numeric types: multiply, divide, divide and return
remainder.

additive, binary +, - For numeric types: addition, substraction; "+" is used for
String concatenation as well.

bit shifting,
binary

>>, >>, >>> For numeric types: multiply and divide by a power of two,
signed and unsigned.

conditional,
relational

instanceof Test whether the object is an instance of the speci�ied type
(class or subclass or interface).

conditional,
relational

==, !=, <, >, <=, >= Equals, differs from, lesser than, greater than, less than or
equals, greater than or equals.

AND, binary & Bitwise logical AND.

exclusive OR,
binary

^ Bitewise logical XOR.

inclusive OR,
binary

| Bitewise logical OR.

conditional,
logical AND

&& Logical AND.

conditional,
logical OR

|| Logical OR.

conditional,
ternary

? : Also called the Elvis operator.

https://doi.org/10.1007/978-1-4842-7080-6_6

Category Operator Scope

assignment =, +=, -=, *=, /= %=, &=, ^=,

<<=,>>=, >>>= ,|=

Simple assignments, combined assignments.

Let’s start this chapter with the most common operator in programming: the assignment
operator, “=”.

The Assignment Operator
The “=” assignment operator is obviously the most used in programming, as nothing can be done
without it. Any variable that you create, regardless of the type, primitive or reference, has to be
given a value at some point in the program. Setting a value using the assignment operator is quite
simple: on the left side of the “=” operator you have the variable name and on the right it will be a
value. The only condition for an assignment to work is that the value matches the type of the
variable.

To test this operator you can play a little using jshell: just make sure you start it in verbose
mode, so you can see the effect of your assignments. The statements executed for this chapter are
shown in Listing 6-1.

jshell -v

| Welcome to JShell -- Version 17-ea

| For an introduction type: /help intro

jshell> int i = 0;

i ==> 0

| created variable i : int

jshell> i = -4;

i ==> -4

| assigned to i : int

jshell> String sample = "text";

sample ==> "text"

| created variable sample : String

jshell> List<String> list = new ArrayList<>();

list ==> []

| created variable list : List<String>

jshell> list = new LinkedList<>();

list ==> []

| assigned to list : List<String>

Listing 6-1 jshell Play

In the previous example, we declared primitive and reference values and assigned and
reassigned values to them. Assignment of values with types that mismatch the initial type is not
permitted. In the code sample in Listing 6-2, we are trying to assign a text value to a variable that
was previously declared as having the int type.

jshell> i = -5;

i ==> -5

| assigned to i : int

jshell> i = "you are not allowed";

| Error:

| incompatible types: java.lang.String cannot be converted to int

| i = "you are not allowed";

| ^-------------------^

Listing 6-2 More jshell Play

Introduction of type inference in JDK 10 does not affect this, and the type of the variable will
be inferred depending on the type of the �irst value assigned. Obviously, this means you cannot
declare a variable using the var keyword without specifying an initial value. This obviously
excludes the null value, as it has no type.

This can be forced though by casting the null value to the type we are interested in, as shown
in Listing 6-3.

jshell> var j;

| Error:

| cannot infer type for local variable j

| (cannot use 'var' on variable without initializer)

| var j;

| ^----^

jshell> var j = 5;

j ==> 5

| created variable j : int

jshell> var sample2 = "bubulina";

sample2 ==> "bubulina"

| created variable sample2 : String

// this does not work, obviously

jshell> var funny = null;

| Error:

| cannot infer type for local variable funny

| (variable initializer is 'null')

| var funny = null;

| ^---------------^

// yes, this actually works !

jshell> var funny = (Integer) null;

funny ==> null

| created variable funny : Integer

Listing 6-3 jshell Failed Variable Declaration

Explicit Type Conversion (type) and instanceof
These two operators are covered together because it is easier to provide code samples pretty
similar to what you might need to write for real scenarios.

It was mentioned in the book before that it is better to keep the reference type as generic as
possible to allow for changing of the concrete implementation without breaking the code. This is

called type polymorphism . Type polymorphism is the provision of a single interface to entities
of different types or the use of a single symbol to represent multiple different types.

Sometimes we might need to group objects together, but execute different code depending on
their types. Remember the Performer hierarchy mentioned in the previous chapter? We’re
going to make use of these types here to show you how to use these operators. If you do not want
to go back to the previous chapter to remember the hierarchy, in Figure 6-1 here it is again, but
with a twist: an extra class named Graphician that implements interface Artist and extends
class Human1 was added to the hierarchy.

Figure 6-1 The Human hierarchy

In the following code sample, an object of type Musician and one of type Graphician are
created and both are added into a list containing references of type Artist. We can do this
because both types implement the interface Artist. The code in Listing 6-4 shows a few classes
in this hierarchy being used to create objects added to the same list and then extracted from it,
and having their type tested.

package com.apress.bgn.six;

import com.apress.bgn.four.classes.Gender;

import com.apress.bgn.four.hierarchy.*;

import java.util.ArrayList;

import java.util.List;

public class OperatorDemo {

 public static void main(String... args) {

 List<Artist> artists = new ArrayList<>();

 Musician john = new Performer("John", 40, 1.91f,

Gender.MALE);

 List<String> songs = List.of("Gravity");

 john.setSongs(songs);

 artists.add(john);

 Graphician diana = new Graphician("Diana", 23, 1.62f,

Gender.FEMALE, "MacOs");

 artists.add(diana);

 for (Artist artist : artists) {

 if (artist instanceof Musician) { // (*)

 Musician musician = (Musician) artist; // (**)

 System.out.println("Songs: " + musician.getSongs());

 } else {

 System.out.println("Other Type: "

+ artist.getClass());

 }

 }

 }

}

Listing 6-4 Code Sample Showing instanceof and (type) Operators

The line marked with (*) shows how to use the instanceof operator . This operator is
used to test whether the object is an instance of the speci�ied type (class, superclass, or interface).
It is used in writing conditions to decide which code block should be executed.

The line marked with (**) does an explicit conversion of a reference, also known as a cast
operation. Since the instanceof operator helps �igure out that the object the reference points to
is of type Musician, we can now convert the reference to the proper type so methods of class
Musician can be called.

Notice how the instanceof operator is used to test the type and then, to use the reference,
an explicit conversion needs to be written. Starting with Java 14 the instanceof operator was
enriched to include conversion which allows for a clearer and simpler syntax, as depicted in
Listing 6-5.

 for (Artist artist : artists) {

 if (artist instanceof Musician musician) {

 System.out.println("Songs: " + musician.getSongs());

 } else {

 System.out.println("Other Type: " + artist.getClass());

 }

}

Listing 6-5 Java 14 New instanceof Syntax

But what happens if an explicit conversion fails? For this we will try to convert the previously
declared Graphician reference to Musician. The following line can be added to the previous
code listing, and it won’t stop the code from compiling.

Musician fake = (Musician) diana;

The Graphician class has no relation to the Musician type, so the code will not run. A
special exception will be thrown in the console to tell you what was wrong. The error message

printed in the console will be quite explicit and is depicted in the next log snippet.

Exception in thread "main" java.lang.ClassCastException: class

com.apress.bgn.six.Graphician cannot be cast to class

com.apress.bgn.four.hierarchy.Musician (com.apress.bgn.six.Graphician

is in module chapter.six of loader 'app';

com.apress.bgn.four.hierarchy.Musician is in module chapter.four@1.0-

SNAPSHOT of loader 'app')

 at

chapter.six/com.apress.bgn.six.OperatorDemo.main(OperatorDemo.java:25)

The message clearly states that the two types are not compatible, and the package and module
names are included.

Explicit conversion is not limited to reference types; it works for primitives too. In the
previous chapter it was mentioned that any variable of a type with values in a smaller interval can
be converted to a type with a bigger interval, without explicit conversion. The reverse is possible
too, by using explicit conversion, but if the value is too big, bits will be lost and the value will be
unexpected. Just look at the examples of conversions between byte and int depicted in Listing 6-6.

jshell> byte b = 2;

b ==> 2

| created variable b : byte

jshell> int i = 10;

i ==> 10

| modified variable i : int

| update overwrote variable i : int

jshell> i = b

i ==> 2

| assigned to i : int

jshell> b = i

| Error: \\

| incompatible types: possible lossy conversion from int to byte

| b = i

| ^

jshell> b = (byte) i

b ==> 2

| assigned to b : byte

jshell> i = 300_000

i ==> 300000

| assigned to i : int

jshell> b = (byte) i

b ==> -32 // oops! value outside of byte interval

| assigned to b : byte

Listing 6-6 jshell Conversions Examples

As a general rule, just use explicit conversion to widen the scope of a variable, not to narrow it,
as narrowing it can lead to exceptions or loss of precision.

Numerical Operators
This section groups together all operators that are mostly used on numerical types. The numerical
operators you know from math: +, -, /, * and comparators are found in programming too,
but they can be combined to obtain different effects.

Unary Operators
Unary operators require only one operand, and they affect the variable they are applied to.

Incrementors and Decrementors
In Java (and some other programming languages) there are unary operator named
incrementors(++) and decrementors(--). These operators are placed before or after a variable to
increase or decrease its value by 1. They are usually used in loops as counters, to condition the
termination of the loop. When they are placed before the variable, they are called pre�ixed and
when are placed after it, they are called post�ixed.

When they are pre�ixed, the operation is executed on the variable before the variable is used in
the next statement. This means that in Listing 6-7, the value of the i variable will be incremented
and then assigned to j.

package com.apress.bgn.six;

public class UnaryOperatorsDemo {

 public static void main(String... args) {

 int i = 1;

 int j = ++i;

 System.out.println("j is " + j + ", i is " + i);

 }

}

Listing 6-7 Pre�ixed Incrementor Example

The expected result of the preceding code is that j=2, because the value of the i variable is
modi�ied to 2, before it is assigned to j. Thus, the expected output is j is 2, i is 2.

When they are post�ixed, the operation is executed on the variable, after the variable is used in
the next statement. This means that in Listing 6-8, the value of i �irst assigned to j, and
incremented after that.

package com.apress.bgn.six;

public class UnaryOperatorsDemo {

 public static void main(String... args) {

 int i = 1;

 int j = i++;

 System.out.println("j is " + j + ", i is " + i);

 }

}

Listing 6-8 Pre�ixed Incrementor Example

The expected result of the preceding code is that j=1, because the value of the i variable is
modi�ied to 2, after it is assigned to j. Thus, the expected output is j is 1, i is 2.

The decrementor operator can be used in the same way; the only effect is that the variable is
decreased by 1.

Try to modify the UnaryOperatorsDemo to use the -- operator instead.

Sign Operators
Mathematical operator +(plus) can be used on a single operator to indicate that a number is
positive (quite redundant and mostly never used). So basically:

int i = 3;

Is the same as:

int i = +3;

Mathematical operator can be used to declare negative numbers.

[jshell> int i = -3

i ==> -3

| created variable i : int

Or negate an expression:

[jshell> int i = -3

i ==> -3

| created variable i : int

[jshell> int j = - (i + 4)

j ==> -1

| created variable j : int

As you can see in the previous example, the result of the (i + 4) is 1, because i = -3,
but because of the - in front of the parentheses , the �inal result that is assigned to the j variable
is -1.

Negation Operator
There is one more unary operator , and its role is to negate variables. Operator "!" applies to
boolean variables and is used to negate them. So true becomes false and false becomes
true as shown in Listing 6-9.

[jshell> boolean t = true

t ==> true

| created variable t : boolean

[jshell> boolean f = !t

f ==> false

| created variable f : boolean

[jshell> boolean t2 = !f

t2 ==> true

| created variable t2 : boolean

Listing 6-9 Negating Boolean Values in jshell

Binary Operators

There are quite a few binary operators, and some of them can even be combined to perform new
operations. This section starts with the ones you probably know from math.

The +(plus/addition/concatenation) Operator
"+" is used to add two numeric variables, as shown in the statements from Listing 6-10.

jshell> int i = 4

i ==> 4

| created variable i : int

jshell> int j = 6

j ==> 6

| created variable j : int

jshell> int k = i + j

k ==> 10

| created variable k : int

jshell> int i = i + 2

i ==> 6

| modified variable i : int

| update overwrote variable i : int

Listing 6-10 Adding Numeric Values in jshell

The last statement int i = i + 2 has the effect of incrementing the value of i with 2 and as
you can see, there is a little redundancy there. That statement can be written without mentioning
i twice, because its effect is to increase the value of i with 2. This can be done by using the +=
operator, which is composed of the assignment and the addition operator. The optimal statement
is i += 2.

The + operator can also be used to concatenate String instances, or String instances with
other types. The JVM decides how to use the + operator depending on the context. For example,
try to guess the output of the code in Listing 6-11 being executed.

package com.apress.bgn.six;

public class ConcatenationDemo {

 public static void main(String... args) {

 int i1 = 0;

 int i2 = 1;

 int i3 = 2;

 System.out.println(i1 + i2 + i3);

 System.out.println("Result1 = " + (i1 + i2) + i3);

 System.out.println("Result2 = " + i1 + i2 + i3);

 System.out.println("Result3 = " + (i1 + i2 + i3));

 }

}

Listing 6-11 Concatenating String and int Values

So how did the guessing go?
If the code executed, the following will be displayed in the console.

1. 3

2. Result1 = 12

3. Result2 = 012

4. Result3 = 3

The explanation for each line int this output is shown here:

The result in line 1 can be explained as follows: all operands are of type int, so JVM adds the
terms as int values, and the System.out.println method prints this result.
The result in line 2 can be explained as follows: parentheses isolate the addition of two terms
(i1+i2). Because of this, the JVM executes the addition between the parentheses as a normal
addition between to int values. But after that, what we are left with is "Result1 = " + 1
+ i3, and this operation includes a String operand, which means the + operator must be
used as a concatenation operator, since adding a number with a text value does not work
otherwise.
The result in line 3 explanation should be obvious at this time: we have three int operands,
and a String operand, and thus the JVM decides that the context of the operation cannot be
numeric, so concatenation is required.
The result in line 4 can be explained in a similar way as the case in line 2. The parentheses
ensure that the context of the operation is numeric, and thus the three operands are added.

This is a typical example to show how JVM decides the context for operations involving the +
operator that you might �ind in other Java tutorials as well. But the int variables can be replaced
with float or double and the behavior will be similar. Concatenation works with reference
types too, since the any Java type is by default an extension of Object and thus can be converted
to String, by calling its toString() method. Listing 6-12 shows the concatenation between a
String and a Performer instance .

package com.apress.bgn.six;

import com.apress.bgn.four.classes.Gender;

import com.apress.bgn.four.hierarchy.Musician;

import com.apress.bgn.four.hierarchy.Performer;

public class ReferenceConcatenationDemo {

 public static void main(String... args) {

 Musician john = new Performer("John", 43, 1.91f,

Gender.MALE);

 System.out.println("Singer: " + john);

 // or convert explicitly

 System.out.println("Singer: " + john.toString());

 }

}

Listing 6-12 Concatenating String and Performer Values

The -(minus) Operator
Mathematical operator -(minus) is used to subtract two variables or to subtract a value from a
variable. In Listing 6-13 you can see how this operator and the -= operator, which is composed of
the assignment, and the subtraction operator are used.

jshell> int i = 4

i ==> 4

| created variable i : int

jshell> int j = 2

j ==> 2

| created variable j : int

jshell> int k = i - j

k ==> 2

| created variable k : int

jshell> int i = 4

i ==> 4

| modified variable i : int

| update overwrote variable i : int

jshell> i = i - 3

i ==> 1

| assigned to i : int

jshell> int i = 4

i ==> 4

| modified variable i : int

| update overwrote variable i : int

jshell> i -=3

$7 ==> 1

| created scratch variable $7 : int

Listing 6-13 Subtracting Numeric Values in jshell

The *(multiply) Operator
The “*” (multiply) operator is used to multiply two variables or to multiply a value with a
variable. It can be used in similar statements as "+" and -, and there is also composed operator
“*=” that can be used to multiply the value of a variable and assign it on the spot. In Listing 6-14,
you can see this operator in action.

jshell> int i = 4

i ==> 4

| created variable i : int

jshell> int j = 2

j ==> 2

| created variable j : int

jshell> int k = i * j

k ==> 8

| created variable k : int

jshell> int i = 4

i ==> 4

| modified variable i : int

| update overwrote variable i : int

jshell> i = i * 3

i ==> 12

| assigned to i : int

jshell> int i = 4

i ==> 4

| modified variable i : int

| update overwrote variable i : int

jshell> i *= 3

$7 ==> 12

| created scratch variable $7 : int

Listing 6-14 Multiplying Numeric Values in jshell

The /(divide) Operator
The "/"(divide) operator is used to divide two variables or to divide a value by a variable. It
can be used in similar statements as “+” and “-” , and there is a composed operator “/=” that can
be used to divide the value of a variable and assign it on the spot.

The result of a division is named quotient, and it is assigned to the variable on the left side of
the assignment operator (“=”). When the operands are integers, the result is an integer too, and
the remainder is discarded. In Listing 6-15, you can see this operator in action.

jshell> int i = 4

i ==> 4

| created variable i : int

jshell> int j = 2

j ==> 2

| created variable j : int

jshell> int k = i / j

k ==> 2

| created variable k : int

jshell> int i = 4

i ==> 4

| modified variable i : int

| update overwrote variable i : int

jshell> int i = i / 3

i ==> 1

| modified variable i : int

| update overwrote variable i : int

jshell> int i = 4

i ==> 4

| modified variable i : int

| update overwrote variable i : int

jshell> i /= 3

$7 ==> 1

| created scratch variable $7 : int

Listing 6-15 Divide Numeric Values in jshell

The %(modulus) Operator
"%" is also called the modulus operator and is used to divide two variables, but the result is the
remainder of the division. The operation is called modularization , and there is also a composed
operator “%=” that can be used to divide the value of a variable and assign the remainder on the
spot. In Listing 6-16, you can see this operator in action.

jshell> int i = 4

i ==> 4

| created variable i : int

jshell> int j = 3

j ==> 3

| created variable j : int

jshell> int k = i % j

k ==> 1

| created variable k : int

jshell> int i = 4

i ==> 4

| modified variable i : int

| update overwrote variable i : int

jshell> i = i % 3

i ==> 1

| assigned to i : int

jshell> int i = 4

i ==> 4

| modified variable i : int

| update overwrote variable i : int

jshell> i %= 3

$7 ==> 1

| created scratch variable $7 : int

Listing 6-16 Modulus Numeric Values in jshell

The modulus operator returns the remainder, but what happens when the operands are real
numbers?

The short answer is that operations with �loating point numbers are tricky. It depends on the
digits after the decimal point, and the operand used for the division. Take a look at Listing 6-17.

jshell> double d = 5.28d

d ==> 5.28

| created variable d : double

jshell> d / 2

$2 ==> 2.64

| created scratch variable $2 : double

jshell> d % 2

$4 ==> 1.2800000000000002

| created scratch variable $4 : double

Listing 6-17 Modulus Numeric Operations with Floating Point Numbers in jshell

The explanation for the previous result is loss of precision because of how �loating-point
numbers are represented internally.

Also, if the remainder is a real number with an in�inite number of decimals after the decimal
point, representing it is not possible, so some rounding is necessary. This is shown in Listing 6-18.

jshell> float f = 1.9f

f ==> 1.9

| created variable f : float

jshell> float g = 0.4f

g ==> 0.4

| created variable g : float

jshell> float h = f % g

h ==> 0.29999995 // remainder

| created variable h : float

Listing 6-18 Loss of Precision in jshell for a Remainder with an In�inite Number of Decimals After the Decimal Point

The reminder returned in jshell is 0.29999995, which can be rounded to 0.3 for some
cases. But rounding can be dangerous when the data is used for sensitive operations, such as
determining the volume of a tumour for a robot to operate on or the perfect trajectory for a rocket
to be sent to Mars.

 Rounding of �loating-point numbers is problematic, because it causes a loss of precision.

The loss of precision when working with �loating point numbers is not a Java problem, since
operations with �loating point numbers are supported according to the rules of the IEEE7542

arithmetic.
If a project needs mathematical operations with a better precision, the java.lang.Math

class provides methods for different types of rounding and other types of �loating point number
operations .

Relational Operations
In certain cases, when designing the solution for a problem, you need to introduce conditions to
drive and control the execution �low. Conditions require the evaluation of a comparison between
two terms using a comparison operator. In this section all comparison operators used in Java are
described and code samples are be provided. Let’s proceed.

The == Equals Operator
"==" tests equality of terms. Because in Java a single equals (“=”) sign is used to assign values, the
double equals was introduces to test equality and avoid confusion. This operator is very often

used to control execution �lows. Controlling execution �lows is the topic of the following chapter,
but to show how the "==" operator should be used, a few simple code samples involving control
statements such as if and for are introduced in this chapter. In Listing 6-19, you can see an
example of testing the "==" comparator in searching value 2 in an array. If the value is found, the
index where it was found is printed in the console.

package com.apress.bgn.six;

public class ComparisonOperatorsDemo {

 public static void main(String... args) {

 int[] values = {1, 7, 9, 2, 6,};

 for (int i = 0; i < values.length; ++i) {

 if (values[i] == 2) {

 System.out.println("Fount 2 at index: " + i);

 }

 }

 }

}

Listing 6-19 Example for Using the "==" Operator to Test a Value in an Array

The condition in the marked line is evaluated, and the result is a boolean value. When the
result is false, nothing is done, but if the result is true the index is printed. Because the result
is of type boolean, if you make a mistake and use = instead of ==, the code will not compile.

 You just have to be extra careful when comparing boolean values. The code in Listing 5-20
compiles and runs, but it doesn’t work as expected.

package com.apress.bgn.six;

public class BadAssignementDemo {

 public static void main(String... args) {

 boolean testVal = false;

 if(testVal = true) {

 System.out.println("TestVal got initialized

incorrectly!");

 } else {

 System.out.println("TestVal is false? " + (testVal ==

false));

 }

 }

}

Listing 6-20 Example of an Unexpected Initialization of a Boolean Variable Instead of an Evaluation of Its Value

The “==” sign works just �ine for primitives. For reference types, you need to use the
equals() method that was covered previously in the book at the beginning of Chapter 5, when
explaining the difference between stack and heap memory.

The Other Comparison Operators

The other comparison operators work only on primitive types. Since there is not that much to say
about each of them individually, this section covers them all.

!= tests inequality of terms. It is the opposite of the == operator. This operator also works on
reference types, but it compares reference values instead the objects themselves, exactly as ==.

As an exercise, modify the example in Listing 6-19 to print a message when the array element
value is different from 2.

< and <= have the same purpose as the one you probably learned in math class. The �irst one
(<) tests if the item on the left of the operator is less than the one on the right. The next one
(<=) tests if the item on the left of the operator is less or equal to the one on the right. This
operator cannot be used on reference types.
> and >= have the same purpose as the one you probably learned in math class. The �irst one
(>) tests if the item on the left of the operator is greater than the one on the right. The next one
(>=) tests if the item on the left of the operator is greater or equal to the one on the right. This
operator cannot be used on reference types.

Almost all numeric operators can be used on variables of different types, as they are
automatically converted to the type that has a wider interval representation. The code in Listing
6-21 re�lects a few situations, but in practice you might need to make even more extreme things
that do not always abide to the common sense rules of programming, nor follow good practices.
Just try to avoid doing that if you can, though!

package com.apress.bgn.six;

public class MixedOperationsDemo {

 public static void main(String... args) {

 byte b = 1;

 short s = 2;

 int i = 3;

 long l = 4;

 float f = 5;

 double d = 6;

 int ii = 6;

 double resd = l + d;

 long resl = s + 3;

 //etc

 if (b <= s) {

 System.out.println("byte val < short val");

 }

 if (i >= b) {

 System.out.println("int val >= byte val");

 }

 if (l > b) {

 System.out.println("long val > byte val");

 }

 if(d > i) {

 System.out.println("double val > byte val");

 }

 if(i == i) {

 System.out.println("double val == int val");

 }

 }

}

Listing 6-21 Different Primitive Types Comparison Examples

Just make sure if you are ever in a situation where you need to make shady things (nonoptimal
code constructs) like these to test a lot and think your conversions well, especially when �loating
point types are involved. This is because (for example) the piece of code in Listing 6-22 can have
quite unexpected results.

package com.apress.bgn.six;

public class BadDecimalPointDemo {

 public static void main(String... args) {

 float f1 = 2.2f;

 float f2 = 2.0f;

 float f3 = f1 * f2;

 if (f3 == 4.4) {

 System.out.println("expected float value of 4.4");

 } else {

 System.out.println("!! unexpected value of " + f3);

 }

 }

}

Listing 6-22 Unexpected Comparison Results with Floating Numbers

If you expect for the message expected �loat value of 4.4 to be printed in the console, you will be
quite surprised.

Any IEEE 754 �loating point number representation will present issues, because some
numbers that appear to have a �ixed number of decimals in the decimal system actually have an
in�inite number of decimals in the binary system. So obviously we cannot compare �loats and
doubles using ==. One of the solutions that is easiest to implement is to use the compare method
provided by the wrapper class, in this case Float.compare, as shown in Listing 6-23.

package com.apress.bgn.six;

public class GoodDecimalPointDemo {

 public static void main(String... args) {

 float f1 = 2.2f;

 float f2 = 2.0f;

 float f3 = f1 * f2;

 if (Float.compare(f3,4.4f) == 0) {

 System.out.println("expected float value of 4.4");

 } else {

 System.out.println("!!unexpected value of " + f3);

 }

 }

}

Listing 6-23 Correct Comparison Results with Float.compare

Using the previous example, the expected message is now printed in the console: expected
�loat value of 4.4.

Bitwise Operators
In Java there are a few operators that are used at bit level to manipulate variables of numerical
types. Bitwise operators are used to change individual bits in an operand. Bitwise operations are
faster and usually use less CPU processing power because of the reduced use of resources. They
are most useful in programming visual applications (e.g., games) where color, mouse clicks, and
movements should be quickly determined to ensure a satisfactory experience.

Bitwise NOT
Operator ~ is sort of a binary negator . Is performs a bit-by-bit reversal of an integer value. This
affects all bits used to represent the value. So if we declare

byte b1 = 10;

The binary representation is 00001010. The Integer class provides a method named
toBinaryString(), which can be used to print the binary representation of the previously
de�ined variable, but it won’t print all the bits because the method doesn’t know on how many bits
we want the representation on. So we need to use a special String method to format the output.
The method depicted in Listing 6-24 can be used to print the b1 value in binary on 8 bits, exactly
as mentioned previously.

public static void print8Bits(byte arg) {

 System.out.println("decimal:" + arg);

 String str =

 String.format("%8s", Integer.toBinaryString(arg)).replace(' ',

'0');

 System.out.println("binary:" + str);

}

Listing 6-24 Method Used to Print Each Bit of a byte Value

If we apply the ~ operator on the b1 value, the binary value resulted is 11110101. In case you
did not notice, this value is out of the byte interval range, and is converted to int automatically.
This is how negative numbers are represented internally in Java—according to the Java Language
Speci�ication, a representation called 2’s complement. (This will be covered toward the end of
the chapter.)

So the result will be -11, as displayed by the code in Listing 6-25:

package com.apress.bgn.six;

BitwiseDemo

public class BitwiseDemo {

 public static void main(String... args) {

 byte b1 = 10;

 print8Bits(b1);

 byte b2 = (byte) ~b1;

 print8Bits(b2);

 }

 // print8Bits method omitted

}

// execution result

decimal:10

binary:00001010

decimal:-11

binary:11111111111111111111111111110101

Listing 6-25 Testing the ~ Bitwise Negator Operator

In the previous code listing, you probably noticed this statement byte b2 = (byte) ~b1
and you are expecting an explanation. The bitwise complement expression operator requires an
operand that is convertible to a primitive integral type, or a compile time error occurs. Internally,
Java uses one or more bytes to represent values. The ~ operator converts its operand to the int
type, so it can use 32-bits when doing the complement operation; this is needed to avoid loss of
precision. That is why an explicit cast to byte is needed in the previous example. And because
everything is clearer with images, in Figure 6-2 you can see the effect of the ~ on the bits of the b1
variable, in parallel with its value.

Figure 6-2 The effect of the ~ negator operator on every bit of a byte value

Bitwise AND
The bitwise AND operator is represented by & and it compares two numbers bit by bit. If the bits
on identical positions have the value of 1, the bit in the result will be 1. The code sample in Listing
6-26 depicts the result of the & operator.

package com.apress.bgn.six;

public class BitwiseDemo {

 public static void main(String... args) {

 byte b1 = 117; // 01110101

 print8Bits(b1);

 byte b2 = 95; // 01011111

 print8Bits(b2);

 byte result = (byte) (b1 & b2); // 01010101

 print8Bits(result);

 }

 // print8Bits method omitted

}

// execution result

decimal:117

binary:01110101

decimal:95

binary:01011111

decimal:85

binary:01010101

Listing 6-26 Testing the & Bitwise AND Operator

The effect of the & operator can be seen better in Figure 6-3. The 01010101 value is the
binary representation of decimal number 85.

Figure 6-3 The effect of the & operator on every bit

Also, for practical reasons the composed operator &= is available in Java so that the bitwise
AND operation can be done on the same variable to which the result is assigned, as shown in
Listing 6-27. The advantage of this is that the result is automatically converted to byte, so no
explicit conversion is required .

jshell> byte b1 = 117

b1 ==> 117

| created variable b1 : byte

jshell> b1 &= 95

$2 ==> 85

| created scratch variable $2 : byte

Listing 6-27 Testing the &= Bitwise AND Operator in jshell

Bitwise Inclusive OR
The bitwise OR operator (also known as inclusive OR) is represented by |(pipe) and it compares
two numbers bit by bit, and if at least one of the bit is 1, the bit in the result is set to 1. The code in
Listing 6-28 depicts the result of the | operator.

package com.apress.bgn.six;

public class BitwiseDemo {

 public static void main(String... args) {

 byte b1 = 117; // 01110101

 print8Bits(b1);

 byte b2 = 95; // 01011111

 print8Bits(b2);

 byte result = (byte) (b1 | b2); // 01111111

 print8Bits(result);

 }

 // print8Bits method omitted

}

// execution result

decimal:117

binary:01110101

decimal:95

binary:01011111

decimal:127

binary:01111111

Listing 6-28 Testing the | Bitwise OR Operator

The effect of the | operator can be seen better in Figure 6-4. The 01111111 value is the
binary representation of number 127.

Figure 6-4 The effect of the | operator on every bit

Also, for practical reasons the composed operator |= is available in Java so that the bitwise
inclusive OR operation can be done on the same variable to which the result is assigned to, as
shown in Listing 6-29. The advantage of this is that the result is automatically converted to byte,
so no explicit conversion is required .

jshell> byte b1 = 117

b1 ==> 117

| created variable b1 : byte

jshell> b1 |= 95

$2 ==> 127

| created scratch variable $2 : byte

Listing 6-29 Testing the |= Bitwise OR Operator in jshell

Bitwise Exclusive OR

The bitwise exclusive OR or XOR operator is represented by ^ and it compares two numbers bit by
bit, and if the values of the bits are different the bit in the result is set to 1. The code sample in
Listing 6-30 depicts the result of the ^ operator.

package com.apress.bgn.six;

public class BitwiseDemo {

 public static void main(String... args) {

 byte b1 = 117; // 01110101

 print8Bits(b1);

 byte b2 = 95; // 01011111

 print8Bits(b2);

 byte result = (byte) (b1 ^ b2); // 00101010

 print8Bits(result);

 }

 // print8Bits method omitted

}

// execution result

decimal:117

binary:01110101

decimal:95

binary:01011111

decimal:42

binary:00101010

Listing 6-30 Testing the ^ Bitwise XOR Operator

The effect of the ^ operator can be seen better in Figure 6-5. The 00101010 value is the
binary representation of number 42.

Figure 6-5 The effect of the ^ operator on every bit

Also , for practical reasons the composed operator ^= is available in Java so that the bitwise
exclusive OR operation can be done on the same variable to which the result is assigned to, as
shown in Listing 6-31. The advantage of this is that the result is automatically converted to byte,
so no explicit conversion is required.

jshell> byte b1 = 117

b1 ==> 117

| created variable b1 : byte

jshell> b1 ^= 95

$2 ==> 42

| created scratch variable $2 : byte

Listing 6-31 Testing the ^= Bitwise OR Operator in jshell

Logical Operators
When designing conditions for controlling the �low of the execution of a program, sometimes
there is need for complex conditions to be written: composed conditions constructed from
multiple expression. There are four operators that can be used to construct complex conditions.
Two of them are bitwise operations that can be reused &(AND) and |(OR), but they require
evaluation of all the parts of the condition. The other operators &&(AND) and ||(OR) have the
exact effect as the previously mentioned ones, but the difference is that they do not require
evaluation of all the expression, which is why they are also called shortcut operators. To explain
the behavior of these operators, there is a typical example that can be used.

In Listing 6-32 we declare a list of 10 terms (some of them null) and a method to generate a
random index used to select an item from the list. Then we test the selected element from the list
to see if it is not null and equal to an expected value. If both conditions are true, then a message
is printed in the console. Let’s check out the �irst example.

package com.apress.bgn.six;

import java.util.ArrayList;

import java.util.List;

import java.util.Random;

public class LogicalDemo {

 static List<String> terms = new ArrayList<>() {{

 add("Rose");

 add(null);

 add("River");

 add("Clara");

 add("Vastra");

 add("Psi");

 add("Cas");

 add(null);

 add("Nardhole");

 add("Strax");

 }};

 public static void main(String... args) {

 for (int i = 0; i < 20; ++i) {

 int index = getRandomIndex(terms.size());

 String term = terms.get(index);

 System.out.println("Generated index: " + index);

 if (term != null & term.equals("Rose")) {

 System.out.println("Rose was found");

 }

 }

 }

 private static int getRandomIndex(int listSize) {

 Random r = new Random();

 return r.nextInt(listSize);

 }

}

Listing 6-32 Testing the & Operator to Control the Execution Flow

To make sure we get the expected result, we repeat the operation of selecting a random
element from the list 20 times. As you can probably notice in the marked line, the bitwise & is
used to compose the two expressions. You would expect the text “Rose was found” to be printed in
the console only if the value of the term variable is not null and is equal to Rose. But when the
preceding code is run, this gets printed:

Exception in thread "main" java.lang.NullPointerException: Cannot

invoke "String.equals(Object)" because "term" is null

 at

chapter.six/com.apress.bgn.six.LogicalDemo.main(LogicalDemo.java:56)

This is because both expressions are evaluated. But think about it! If the term variable is
null, should we even evaluate its equality to Rose, especially since calling a method on a null
object causes a runtime error? Obviously not, which is why the & is not suitable for this case. If the
term is null it fails the �irst condition and there is no point in evaluating the second, so enter the
&& shortcut operator, which does exactly this. This works because when using the logical AND
operator, if the �irst expression is evaluated to false, it does not really matter what the second
expression is evaluated to; the result will always be false. So we can correct previous code
sample to the one in Listing 6-33.

package com.apress.bgn.six;

import java.util.ArrayList;

import java.util.List;

import java.util.Random;

public class LogicalDemo {

 static List<String> terms = new ArrayList<>() {{

 /* list elements omitted */}};

 public static void main(String... args) {

 for (int i = 0; i < 20; ++i) {

 int index = getRandomIndex(terms.size());

 String term = terms.get(index);

 System.out.println("Generated index: " + index);

 if (term != null && term.equals("Rose")) {

 System.out.println("Rose was found");

 }

 }

 }

 // getRandomIndex method omitted

}

Listing 6-33 Testing the && Operator to Control the Execution Flow

When the code is executed, no exception will be thrown, because if the term is null the
second expression is not evaluated. Thus, this code is technically more ef�icient because it
evaluates less conditions, but it is also designed better because it avoids failures.

Now, let’s modify the previous code sample and this time let’s print a message if we �ind a
null or if we �ind Rose. For this an OR operator is needed, so we’ll try �irst to use the bitwise
version (Listing 6-34):

package com.apress.bgn.six;

import java.util.ArrayList;

import java.util.List;

import java.util.Random;

public class LogicalDemo {

 static List<String> terms = new ArrayList<>() {{

 /* list elements omitted */}};

 public static void main(String... args) {

 for (int i = 0; i < 20; ++i) {

 int index = getRandomIndex(terms.size());

 String term = terms.get(index);

 System.out.println("Generated index: " + index);

 if (term == null | term.equals("Rose")) {

 System.out.println("null or Rose was found");

 }

 }

 }

 // getRandomIndex method omitted

}

Listing 6-34 Testing the && Operator to Control the Execution Flow

If we run the previous code, a NullPointerException is thrown when the random index
happens to match the index of a null element in the list. This is because the | operator requires
both expression to be evaluated, so if term is null calling term.equals(..) will cause the
exception to be thrown. So to make sure the code works as expected, the | must be replaced with
||, which shortcuts the condition and does not evaluate the second expression in it, except if the
evaluation result of the �irst condition is false. This works because when using the logical OR
operator, if the �irst expression evaluates to true, it does not really matter what the second
expression gets evaluated to, the result will always be true. We’ll leave that as an exercise for
you.

Conditions can be made up from more than one expression and more then one operator,
whether is && or ||. The code in Listing 6-35 depict a few complex conditions.

package com.apress.bgn.six;

import java.util.ArrayList;

import java.util.List;

import java.util.Random;

public class ComplexConditionsDemo {

 static List<String> terms = new ArrayList<>() {{

 /* list elements omitted */}};

 public static void main(String... args) {

 for (int i = 0; i < 20; ++i) {

 int rnd = getRandomIndex(terms.size());

 if (rnd == 0 || rnd == 1 || rnd <= 3) {

 System.out.println(rnd + ": this works...");

 }

 if (rnd > 3 && rnd <=6 || rnd < 3 && rnd > 0) {

 System.out.println(rnd + ": this works too...");

 }

 }

 }

 private static int getRandomIndex(int listSize) {

 Random r = new Random();

 return r.nextInt(listSize);

 }

}

Listing 6-35 Complex Conditions Composed from Multiple Expressions

Beware of conditions that become too complex; make sure you cover that piece of code with a
lot of tests. When writing complex conditions it is possible that some expressions become
redundant, and IntelliJ IDEA and other smart editors display warnings of dead code on
expressions that are redundant and unused to help the developer improve the design of the code.

Shift Operators
The shift operators are operators working at bit level. Because moving bits around is a sensitive
operation, the requirement of these operands is for arguments to be integers. The operand to the
left of the operator is the number that will be shifted, and the operand to the right of the operator
is the number of bits that will be shifted.

There are three shift operators in Java, and each of them can be composed with the
assignment operator to do the shifting and assign the result to the original variable on the spot.
This section analyzes all shift operators with simple example and images to make things clear.

The << Shift Left Operator
As its name says, given a number represented in binary, this operator is used to shift bits to the
left. The code in Listing 6-36 shows the << shift left operator in action.

package com.apress.bgn.six;

public class ShiftDemo {

 public static void main(String... args) {

 byte b1 = 12; // 00001100

 print8Bits(b1);

 byte b2 = (byte) (b1 << 3); // 01100000

 print8Bits(b2);

 }

 // print8Bits method omitted

}

// execution result

decimal:12

binary:00001100

decimal:96

binary:01100000

Listing 6-36 Testing the << Operator

When bits are shifted to the left, the remaining positions are �illed with 0. Also, the number
becomes bigger, and the new value is its old value multiplied with 2^N, where N is the second
operand.

The code in Listing 6-36 can be written like as b1 <<= 3, using the composed operator,
without the need to declare another variable. The result is 12 * 2^3. The bits are shifted as
displayed in Figure 6-6.

Figure 6-6 The effect of the`<<` operator

 Shifting operators promote byte values to int, to avoid loss of precision. In the previous
code sample, the number of bits to shift was small enough to result in a value inside the byte
type interval. That is why explicit conversion to byte works and the result is still valid. This is
not always possible, as you will see further in this section.

The >> Signed Shift Right Operator
As its name says, given a number represented in binary, this operator is used to shift bits to the
right. The code in Listing 6-37 shows the >> shift right operator in action.

package com.apress.bgn.six;

public class ShiftDemo {

 public static void main(String... args) {

 byte b1 = 96; // 01100000

 print8Bits(b1);

 byte b2 = (byte) (b1 >> 3); // 00001100

 print8Bits(b2);

 }

 // print8Bits method omitted

}

// execution result

decimal:96

binary:01100000

decimal:12

binary:00001100

Listing 6-37 Testing the >> Operator

When bits are shifted to the right, the remaining positions are �illed with 0 if the number is
positive. If the number is negative, the remaining positions are replaced with 1. This is done to
preserve the sign of the number. Also, the number becomes smaller, and the new value is its old
value divided by 2^N, where N is the second operand.

The code in Listing 6-37 can be written as b1 >>= 3, using the composed operator, without
the need to declare another variable. The result is 12 * 2^3. The bits are shifted as displayed in
Figure 6-7.

Figure 6-7 The effect of the`>>` operator

Figure 6-7 and Listing 6-37 both show the shift right operator applied to a positive number.
When it comes to negative numbers things get complicated, because negative numbers are
represented internally as 2’s complement. What does this mean? It means that to get the
representation of a negative number, we get the representation of the positive number, and we �lip
the bits and then add 1. Figure 6-8 depicts the process of obtaining the internal representation of
-7, starting from the representation of 7.

Figure 6-8 Representing negative numbers internally in 2’s complement

The -7 value in 2’s complement representation is out of the byte range, so internally negative
numbers are represented as integers. This means that the print8Bits(..) method needs to be
replaced with a version that prints all 32 bits of an int value. Listing 6-38 shows the >> unsigned
shift right operator applied to a negative number.

package com.apress.bgn.six;

public class ShiftDemo {

 public static void main(String... args) {

 System.out.println(" -- ");

 int i1 = -96;

 print32Bits(i1);

 int i2 = i1 >> 3;

 print32Bits(i2);

 }

 public static void print32Bits(int arg) {

 System.out.println("decimal:" + arg);

 String str = arg > 0 ?

 String.format("%32s", Integer.toBinaryString(arg)).replace('

', '0'):

 String.format("%32s", Integer.toBinaryString(arg)).replace('

', '1');

 System.out.println("binary:" + str);

 }

}

// execution result

decimal:-96

binary:11111111111111111111111110100000

decimal:-12

binary:11111111111111111111111111110100

Listing 6-38 Testing the >> Operator with Negative Numbers

An advantage of 2’s complement representation is that arithmetic operations are identical for
signed and unsigned operators, which means half the circuitry is required in the cpu’s arithmetic
logic unit.

 A peculiar thing about 2’s complement representation is that -Integer.MAX_VALUE
and Integer.MIN_VALUE are represented in the same way.

The >>> Unsigned Shift Right Operator
The >>> unsigned shift right operator is also called logical shift. Given a number represented in
binary, this operator is used to shift bits to the right, and the remaining positions are replaced
with 0, regardless of whether the value is positive or negative. This is why the result will always be
a positive number.

Listing 6-39 shows the >>> unsigned shift right operator in action on a negative value.

package com.apress.bgn.six;

public class ShiftDemo {

 public static void main(String... args) {

 int i1 = -16;

 print32Bits(i1);

 int i2 = i1 >>> 1;

 print32Bits(i2);

 }

 // print32Bits method omitted

}

// execution result

decimal:-16

binary:11111111111111111111111111110000

decimal:2147483640

binary:01111111111111111111111111111000

Listing 6-39 Testing the >>> Operator with Negative Values

The code in Listing 6-39 can be written like as i1 >>>= 1, using the composed operator,
without the need to declare another variable. The result is a very big positive number. The bits are
shifted as displayed in Figure 6-9.

Figure 6-9 The effect of the`>>>` operator on a negative value

As with all bitwise operators, shifting operators promote char, byte, or short type
variables to int, which is why an explicit conversion is necessary. As you have probably noticed,
shifting bits on negative numbers is tricky; it is quite easy for the resulted number to be outside
the interval of allowed values for a type, and an explicit conversion can lead to loss of precision or
even serious anomalies. So why use them? Because they are fast. Just make sure to test intensively
when using shifting operators .

The Elvis Operator
The Elvis Operator is the only ternary operator in Java. Its function is equivalent to a Java method
that evaluates a condition and depending on the outcome, returns a value. The template of the
Elvis operator is depicted here:

variable = (condition) ? val1 : val2

The method equivalent to this operator is depcited in Listing 6-40.

variable = methodName(..);

type methodName(..) {

 if (condition) {

 return val1;

 } else {

 return val2;

 }

}

Listing 6-40 The Elvis Operator Equivalent Method

The reason this operator is named the Elvis operator is because the question mark resembles
Elvis Presley’s hair, and the colon resembles the eyes. The Elvis operator can be easily tested in
jshell, as depicted in Listing 6-41.

jshell> int a = 4

a ==> 4

| created variable a : int

jshell> int result = a > 4 ? 3 : 1;

result ==> 1

| created variable result : int

jshell> String a2 = "test"

a2 ==> "test"

| created variable a2 : String

jshell> var a3 = a2.length() > 3 ? "hello" : "bye-bye"

a3 ==> "hello"

| created variable a3 : String

Listing 6-41 The Elvis Operator Being Tested in jshell

This operator is quite practical when you have a simple if statement that contains only one
expression per branch, because using this operator you can compact the whole thing in one
expression, one line of code. Just make sure when using it that the readability of the code is
improved. From a performance point of view, there is no difference between an if statement and
the equivalent Elvis operator expression. Another advantage of using the Elvis operator is that the
expression can be used to initialize a variable.

Summary
In this chapter we learned that:

Java has a lot of operators, simple and composed.
Bitwise operators are fast, but dangerous.
Negative numbers are represented internally in 2’s complement.
The + operator does different things in different contexts.
Java has a ternary operator that accepts three operands: a boolean expression and two objects
of the same type. The result of the evaluation of the boolean expression decides which operand
is the result of the statement.

The purpose of this chapter is just to make you familiar with all the operators that will be used
throughout the book, to help you understand the provided solutions and even design and write
your own.

1

2

Footnotes
The implementation of the new class is not relevant for this chapter so it won’t be detailed here, but you can �ind it in the project

attached to this book.

A description of the IEEE Standard for Floating-Point Arithmetic can be found at Wikipedia, “IEEE 754,”

https://en.wikipedia.org/wiki/IEEE_754, accessed October 15, 2021.

https://en.wikipedia.org/wiki/IEEE_754

(1)

© Iuliana Cosmina 2022
I. Cosmina, Java 17 for Absolute Beginners
https://doi.org/10.1007/978-1-4842-7080-6_7

7. Controlling the Flow

Iuliana Cosmina1

Edinburgh, UK

The previous chapters have covered ways to create statements, and what operators
to use depending on the operand types. Sometimes in the previous chapters
elements of logic were added to make the code runnable for you, and this chapter is
dedicated to explaining in detail how you can manipulate the execution of your code
using fundamental programming conditional and repetitive statements. A solution,
an algorithm can be represented using �low charts.

Most of the programming we did up to this chapter contains declaration and
printing statements, simple one-step statements. Take a look at the piece of code in
Listing 7-1.

package com.apress.bgn.seven;

public class Main {

 public static void main(String... args) {

 String text = "sample";

 System.out.println(text);

 }

}

Listing 7-1 Java Code Made of a Few Statements

If we were to design a �lowchart for it, the schema would be simple and linear,
no decision, and no repetition, as depicted in Figure 7-1.

https://doi.org/10.1007/978-1-4842-7080-6_7

Figure 7-1 Simple �lowchart sample

Resolving real-world problems often requires a more complicated logic than
that, so more complicated statements are necessary. Before getting into that, let’s
describe the components of a �low chart, because we will make use of that a lot
during this chapter. In Table 7-1 all �lowchart elements are listed and their purpose
is explained.

Table 7-1 Flowchart Elements

Shape Name Scope

Terminal Indicates beginning or end of a program, and contains a text relevant to its
scope.

Flowline Indicates the �low of the program and the order of operations.

Input/Output Indicates declaration of variables and outputting values.

Process Simple process statement: assignment, change of values, and so on.

Decision Shows a conditional operation that will decide a certain path of execution.

Prede�ined Process This element indicates a process de�ined elsewhere.

On-page Connector This element is usually labeled and indicates the continuation of the �low
on the same page.

Off-page Connector This element is usually labeled and indicates the continuation of the �low
on a different page.

Comment (Or
annotation)

When a �low or an element requires extra explanation, it is introduced
using this type of element.

The �lowchart elements presented in the previous table are pretty standard; you
will probably �ind very similar elements used in any programming course or
tutorial. After this consistent introduction, it is only �it to get into it.

if-else Statement
The most simple decisional �low statement in Java is the if-else statement
(probably in other languages as well). You’ve probably seen the if-else
statement being used in code samples for the previous chapters; there was no way
to avoid it, because providing runnable code that encourages you to write your own
is important. In this section the focus will be strictly on this type of statement.

Let’s imagine this scenario: we run a Java program with a numeric argument
provided by the user. If the number is even we print EVEN in the console; otherwise,
we print ODD. The �lowchart matching this scenario is depicted in Figure 7-2.

Figure 7-2 if-else �lowchart sample

The condition is evaluated to a boolean value: if the result is true the
statement corresponding to the if branch is executed, and if the result is false,
the statement corresponding to the else branch is executed.

The Java code that implements the process described by this �lowchart is
depicted in Listing 7-2.

package com.apress.bgn.seven;

public class IfFlowDemo {

 public static void main(String... args) {

 int a = Integer.parseInt(args[0]);

 if (a % 2 == 0) { // is even

 //Display EVEN

 System.out.println("EVEN");

 } else {

 //Display ODD

 System.out.println("ODD");

 }

 }

}

Listing 7-2 Java Code with if-else Statement

To run this class with different arguments you have to create an IntelliJ launcher
and add your argument into the Program arguments text �ield, like explained at
the beginning of this book. Each Java statement in the previous code snippet was
paired with a comment matching the �lowchart element, to make the
implementation obvious. The fun thing is that not both branches of an if statement
are mandatory, the else branch is not always necessary.

Sometimes you just want to print something if a value just matches a condition,
and you are not interested in what happens otherwise. For example, given a user
provided argument, we just want to print a message if the number is negative, but
we are not interested to printing or doing anything else if the number is positive.
The �lowchart for that is depicted in Figure 7-3.

Figure 7-3 if �lowchart sample, missing the else branch

And the Java code is depicted in Listing 7-3.

package com.apress.bgn.seven;

public class IfFlowDemo {

 public static void main(String... args) {

 int a = Integer.parseInt(args[0]);

 if (a < 0) {

 System.out.println("Negative");

 }

 }

}

Listing 7-3 Java Code with if Statements

In the same way as the statement can be made simple, in the same way, if we
need it, we can link more if-else statements together. Let’s consider the
following example: the user inserts a number from 1 to 12, and we have to print the
season the month with that number corresponds to. How would the �lowchart look
like? Do you think Figure 7-4 �its the scenario?

Figure 7-4 Complex if-else �lowchart sample

 Also, when the code blocks for if or else contain is a single statement, the
curly brackets are not mandatory, but most developers keep them for code
clarity and to help IDEs indent the code properly.

Looks complicated, right? Wait until you see the code, which is depicted in
Listing 7-4.

package com.apress.bgn.seven;

public class SeasonDemo {

 public static void main(String... args) {

 int a = Integer.parseInt(args[0]);

 if(a == 12 || (a>=1 && a<= 2)) {

 System.out.println("Winter");

 } else {

 if (a>2 && a <= 5) {

 System.out.println("Spring");

 } else {

 if (a>5 && a <= 8) {

 System.out.println("Summer");

 } else {

 if (a>8 && a <= 11) {

 System.out.println("Autumn");

 } else {

 System.out.println("Error");

 }

 }

 }

 }

 }

}

Listing 7-4 Java Code with a Lot of if-else Statements

It looks ugly, right? Fortunately, Java provides a way to simplify it, especially
because it really makes no sense having so many else blocks that only contain
another if statement. The simpli�ied code connects the else statements with the
contained if(s) statements. The code ends up looking like Listing 7-5.

package com.apress.bgn.seven;

public class CompactedSeasonDemo {

 public static void main(String... args) {

 int a = Integer.parseInt(args[0]);

 if (a == 12 || (a >= 1 && a <= 2)) {

 System.out.println("Winter");

 } else if (a > 2 && a <= 5) {

 System.out.println("Spring");

 } else if (a > 5 && a <= 8) {

 System.out.println("Summer");

 } else if (a > 8 && a <= 11) {

 System.out.println("Autumn");

 } else {

 System.out.println("Error");

 }

 }

}

Listing 7-5 Java Code with Compacted if-else Statements

Any argument provided by the user that is not the [1,12] that will cause the
program to print Error. You can test it for yourself by modifying your IntelliJ Idea
launcher. The elements to focus on are underlined in Figure 7-5.

Figure 7-5 IntelliJ IDEA launcher and parameters

switch Statement
When a value requires different actions for a �ixed set of values, the if might get
more complex, and the more the set of values increases. In this case the more
suitable statement is the switch statement. Let’s look at the code in Listing 7-6
�irst, and then check what more can be improved.

package com.apress.bgn.seven.switchst;

public class SeasonSwitchDemo {

 public static void main(String... args) {

 int a = Integer.parseInt(args[0]);

 var season = "";

 switch (a) {

 case 1:

 season = "Winter";

 break;

 case 2:

 season = "Winter";

 break;

 case 3:

 season = "Spring";

 break;

 case 4:

 season = "Spring";

 break;

 case 5:

 season = "Spring";

 break;

 case 6:

 season = "Summer";

 break;

 case 7:

 season = "Summer";

 break;

 case 8:

 season = "Summer";

 break;

 case 9:

 season = "Autumn";

 break;

 case 10:

 season = "Autumn";

 break;

 case 11:

 season = "Autumn";

 break;

 case 12:

 season = "winter";

 break;

 default:

 System.out.println("Error");

 }

 System.out.println(season);

 }

}

Listing 7-6 Java Code with Detailed switch Statement

That does not look very practical, at least not for this scenario. Before showing
how the switch statement can be written differently, let’s explain the structure
and logic of it �irst. The general template of the switch statement is depicted in
Listing 7-7:

switch ([onvar]) {

 case [option]:

 [statement;]

 break;

 ...

 default:

 [statement;]

}

Listing 7-7 General Template of the switch Statement

The terms in square brackets are detailed in the list here:

[onvar] is the variable that is tested against the case statements to select a
statement. It can be of any primitive type, enumerations, and starting with Java 7,
String. Clearly the switch statement is not limited by conditions evaluated to
boolean results, which allows for a lot of �lexibility.
case [option] is a value the variable mentioned previously is matched upon
to make a decision regarding the statement to execute. A case, as the keyword
states.
[statement] is a statement or a group of statements to execute when
[onvar] == [option]. Considering that there is no else branch, we have to
make sure that only the statement(s) corresponding to the �irst match is
executed, which is where the break; statement comes in. The break statement
stops the current execution path and moves the execution point to the next
statement outside the statement that contains it. Without break; statements the
behavior switches to fall through and this means every case statement
after the match is executed until a break; is found. We’ll cover it more later in
the chapter. Without it, after the �irst match, all subsequent cases are traversed
and statements corresponding to them will be executed.
If we execute the preceding program and we provide number 7 as an argument,
the text Summer will be printed. But if the break statements for case 7 and 8 are
commented, the output changes to Autumn.
default [statement;] is a statement that is executed when no match on a
case has been found; the default case does not need a break statement. If the
previous program is run with any number outside the [1-12] interval, Error will
be printed, because the default statement will be executed.

Now that you understand how switch works, let’s see how we can reduce the
previous statement. The months example is suitable here, because it can further be
modi�ied to show how the switch statement can be simpli�ied, when a single
statement should be executed for multiple cases. In our code, writing each
assignment statement three times is a little redundant. There are also a lot of
break; statements. There are two ways in which the previous switch statement
be improved.

The �irst way of simplifying the switch statement in Listing 7-6 is by grouping
together the cases that return the same value, as shown in Listing 7-8.

package com.apress.bgn.seven.switchst;

public class SimplifiedSwitchDemo {

 public static void main(String... args) {

 int a = Integer.parseInt(args[0]);

 var season = "";

 switch (a) {

 case 1:

 case 2:

 case 12:

 season = "winter";

 break;

 case 3:

 case 4:

 case 5:

 season = "Spring";

 break;

 case 6:

 case 7:

 case 8:

 season = "Summer";

 break;

 case 9:

 case 10:

 case 11:

 season = "Autumn";

 break;

 default:

 System.out.println("Error");

 }

 System.out.println(season);

 }

}

Listing 7-8 Simpli�ied switch Statement

The grouping in this case represents the alignment of the cases that require the
same statement to be executed. This still looks a little weird, but it reduces the
statement repetition a little. The behavior in the previous case is possible because
each case without a break statement is followed by the next case statement.

The second way is to use a switch expression introduced in Java 12. The
switch returns the season directly instead of storing it into a variable, and this
allows for a simpler syntax, as depicted in Listing 7-9.

package com.apress.bgn.seven.switchst;

public class ExpessionSwitchDemo {

 public static void main(String... args) {

 int a = Integer.parseInt(args[0]);

 String season = switch (a) {

 case 1 -> "Winter";

 case 2 -> "Winter";

 case 3 -> "Spring";

 case 4 -> "Spring";

 case 5 -> "Spring";

 case 6 -> "Summer";

 case 7 -> "Summer";

 case 8 -> "Summer";

 case 9 -> "Autumn";

 case 10 -> "Autumn";

 case 11 -> "Autumn";

 case 12 -> "winter";

 default -> "Error";

 };

 System.out.println(season);

 }

}

Listing 7-9 switch Expression Example

The switch expression was introduced as a way to treat a switch statement as
an expression, evaluate it to a single value, and thus use it in statements. The
switch expression does not require break; statements to prevent fall through.
When blocks of code are executed following a match with a case value, the value is
returned using the yield statement, introduced in Java 13.

The code in Listing 7-10 shows a different version of the previous switch
expression, where case values that require the same result are grouped and extra

System.out.println(..) is added to show the yield usage. The returned
value is printed directly by the System.out.println(..) that encloses the switch
expression.

package com.apress.bgn.seven.switchst;

public class AnotherSwitchExpressionDemo {

 public static void main(String... args) {

 int a = Integer.parseInt(args[0]);

 System.out.println(switch (a) {

 case 1, 2, 12 -> {

 System.out.println("One of 1,2,12 is

tested.");

 yield "Winter";

 }

 case 3,4,5 -> {

 System.out.println("One of 3,4,5 is

tested.");

 yield "Spring";

 }

 case 6,7,8 -> {

 System.out.println("One of 6,7,8 is

tested.");

 yield "Summer";

 }

 case 9,10,11 -> {

 System.out.println("One of 9,10,11 is

tested.");

 yield "Autumn";

 }

 default ->

 throw new IllegalStateException("Unexpected

value");

 });

 }

}

Listing 7-10 switch Expression Example Using yield Statements

In Java 7, the switch statement started supporting String values. The main
problem with switch supporting String values is that there is always a
possibility of unexpected behavior, because the equals(..) method is used to
�ind a match and obviously, the method is case-sensitive. The previous example is

modi�ied to ask the user for a text representing the month. The switch statement
is used to decide the season to print and unless the text in case options matches
the text introduced by the user exactly, the text printed is Error. Also, since the
switch expression was mentioned, the code changes to the one in Listing 7-11.

package com.apress.bgn.seven.switchst;

public class StringSwitchSeasonDemo {

 public static void main(String... args) {

 //Read a

 String a = args[0];

 var season = "";

 switch (a) {

 case "january", "february", "december" ->

season = "winter";

 case "march", "april", "may" -> season =

"Spring";

 case "june", "july", "august" -> season =

"Summer";

 case "september", "october", "november" ->

season = "Autumn";

 default -> System.out.println("Error");

 }

 System.out.println(season);

 }

}

Listing 7-11 switch Statement Using String Values

If we run the previous program with argument january, winter will be printed in
the console. If we run it with January or null, Error will be printed in the console.

Before support for String value, switch statements supported enum values
as well. This is practical when the values are grouped into a �ixed set, such as the
names of the months in a year. By using enums, support for String values can be
achieved. The user introduces the month as a text value. This value is converted to
upper case and used to extract the corresponding enum value. This allows for
support of String values that are not case sensitive in a switch statement. The
code in Listing 7-12 shows such an implementation.

package com.apress.bgn.seven.switchst;

public class EnumSwitchDemo {

 enum Month {

 JANUARY, FEBRUARY, MARCH, APRIL, MAY, JUNE, JULY,

AUGUST,

 SEPTEMBER, OCTOBER, NOVEMBER, DECEMBER

 }

 public static void main(String... args) {

 //Read a

 String a = args[0];

 try {

 Month month = Month.valueOf(a.toUpperCase());

 var season = "";

 switch (month) {

 case JANUARY:

 case FEBRUARY:

 case DECEMBER:

 season = "Winter";

 break;

 case MARCH:

 case APRIL:

 case MAY:

 season = "Spring";

 break;

 case JUNE:

 case JULY:

 case AUGUST:

 season = "Summer";

 break;

 case SEPTEMBER:

 case OCTOBER:

 case NOVEMBER:

 season = "Autumn";

 break;

 }

 System.out.println(season);

 } catch(IllegalArgumentException iae) {

 System.out.println("Unrecognized enum value: "

+ a);

 }

 }

}

Listing 7-12 switch Statement Using Enums Values

Notice how using enums, the same season is returned for january, January,
JANuary, and so on. Also, no default option is needed, because an exception is
thrown if an enum value cannot be found matching the user provided data.

This is all that can be said about the switch statement. In practice, depending on
the solution you are trying to develop, you might decide to use a combination of if
and switch statements. Unfortunately, because of its peculiar logic and its �lexible
number of options, it is dif�icult to draw a �lowchart for the switch statement, but
nevertheless I’ve tried, and it’s depicted in Figure 7-6.

Figure 7-6 The switch statement �lowchart

Looping Statements
Sometimes in programming, we need repetitive steps that involve the same
variables. To write the same statement over and over again to get the job done
would be ridiculous. Let’s take the example of sorting an array of integer values. The
most known algorithm to do this, and the one that is taught �irst in programming
courses because it is simple, is called Bubble Sort . The algorithm compares the
elements of an array two by two, and if they are not in the correct order, it swaps
them. It goes over the array again and again until no more swaps are needed. The
effects of the algorithm are depicted in Figure 7-7.

Figure 7-7 Bubble sort phases and effect

This algorithm performs two types of loops: one iterates each element of the
array using indexes. This traversal is repeated until no swaps are necessary. In Java
this algorithm can be written in more than one way using different looping
statements. But we’ll get there; let’s take it slow.

There are three types of looping statements in Java:

for statement
while statement
do-while statement

The for looping statement is the most used, but while and do-while have
their uses as well.

for Statement
For is recommended for iterating on objects like array and collections that can be
counted. For example, traversing an array and printing each one of its values is as
simple as depicted in Listing 7-13.

package com.apress.bgn.seven.forloop;

public class ForLoopDemo {

 public static void main(String... args) {

 int arr[] = {5, 1, 4, 2, 3};

 for (int i = 0; i < arr.length; ++i) {

 System.out.println("arr[" + i + "] = " +

arr[i]);

 }

 }

}

Listing 7-13 Simple for Loop

Based on the previous example, a �lowchart for the for statement can be drawn,
depicted as in Figure 7-8.

Figure 7-8 The for statement �lowchart

The code snippet in Listing 7-14 depicts the for loop template:

for ([int_expr]; [condition];[step]){

 [code_block]

}

Listing 7-14 The for Loop Template

Each of the terms between square brackets have a speci�ic purpose that is
explained in the following list:

[init_expr] is the initialization expression that is used to set the initial value
of the counter used by this loop. It ends with ; and is not mandatory, as the
declaration initialization can be done outside the statement, especially if we are
interested in using the counter variable later in the code and outside the
statement. The preceding code can be very well written as in Listing 7-15:

package com.apress.bgn.seven.forloop;

public class AnotherForLoopDemo {

 public static void main(String... args) {

 int arr[] = {5, 1, 4, 2, 3};

 int i = 0;

 for (; i < arr.length; ++i) {

 System.out.println("arr[" + i + "] = " +

arr[i]);

 }

 System.out.println("Loop exited with index: " + i);

 }

}

Listing 7-15 The for Loop with Termination Condition and Counter Modi�ication Expression

[condition] is the termination condition of the loop; as long as this condition
is evaluated to true, the loop will continue executing. The condition ends with ;
and funny enough it is not mandatory either, as the termination condition can be
placed inside the code to be executed repeatedly by the loop. So the preceding
code can be modi�ied further and be written as in Listing 7-16:

package com.apress.bgn.seven.forloop;

public class AndAnotherForLoopDemo {

 public static void main(String... args) {

 int arr[] = {5, 1, 4, 2, 3};

 int i = 0;

 for (; ; ++i) {

 if (i >= arr.length) {

 break;

 }

 System.out.println("arr[" + i + "] = " +

arr[i]);

 }

 System.out.println("Loop exited with index: " + i);

 }

}

Listing 7-16 The for Loop with Only Counter Modi�ication Statement

[step] is the step expression or increment, this is the expression that increases
the counter on every step of the loop. Being the last term, it does not end in ;. As
you probably already expected, it is not mandatory either, as nothing stops the
developer from manipulating the counter inside the code block. So the preceding
code can also be written as in Listing 7-17:

package com.apress.bgn.seven.forloop;

public class YeyAnotherForLoopDemo {

 public static void main(String... args) {

 int arr[] = {5, 1, 4, 2, 3};

 int i = 0;

 for (; ;) {

 if (i >= arr.length) {

 break;

 }

 System.out.println("arr[" + i + "] = " +

arr[i]);

 ++i;

 }

 System.out.println("Loop exited with index: " + i);

 }

}

Listing 7-17 The for Loop with No Initialization, Condition, or Counter Modi�ication Expression

The modi�ication of the counter does not even have to be done inside the step
expression; it can be done in the termination condition. The initialization
expression and the termination condition must be modi�ied accordingly to still �it
the purpose. The code depicted in Listing 7-18 has the same effect as all samples
before it.

package com.apress.bgn.seven.forloop;

public class LastForLoopDemo {

 public static void main(String... args) {

 int arr[] = {5, 1, 4, 2, 3};

 int i;

 for (i = -1; i++ < arr.length -1;) {

 System.out.println("arr[" + i + "] = " +

arr[i]);

 }

 System.out.println("Loop exited with index: " + i);

 }

}

Listing 7-18 The for Loop with Counter Modi�ication in Termination Condition

You should also know that the step expression does not really have to be an
incrementation. It can be any expression that modi�ies the value of the counter.
Instead of ++i or i++, you can use i= i+1, or i=i+3, or even decrementation, if
the array or collection is traversed starting with a bigger index toward a lower one.
Any mathematical operations that keep the counter within the boundaries of the
type and within the collection boundaries can be used safely.

[code_block] is a block of code executed repeatedly in every step of the loop.
If there is no exit condition within this code, this block of code will be executed by
as many times as the counter passes the termination condition.

 When the code block contains a single statement the curly brackets are
not mandatory, but most developers keep them for code clarity and to help
IDEs indent the code properly.

 Since it was mentioned that the initialization expression, the termination
condition, and the iteration expression are optional, this means the following
is a valid for statement:

for (; ;) {

 \\ statement(s) here

}

Just be careful when using the for statement like that. The code block must
contain a termination condition to avoid an in�inite loop.

This is the basic form of the for looping statement, but in Java there are other
ways to iterate a group of values. Let’s say that instead of an array we have to iterate

over a list, as depicted in Listing 7-19.

package com.apress.bgn.seven.forloop;

import java.util.List;

public class ListLoopDemo {

 public static void main(String... args) {

 List<Integer> list = List.of(5, 1, 4, 2, 3);

 for (int j = 0; j < list.size(); ++j) {

 System.out.println("list[" + j + "] = " +

list.get(j));

 }

 }

}

Listing 7-19 The for Loop Over a List

The code seems somehow impractical, and that is why List<E> instances can
be traversed with a different type of for statement that was known as forEach
until Java 8. You will see immediately why, but �irst let’s see the forEach in action
in Listing 7-20.

package com.apress.bgn.seven.forloop;

import java.util.List;

public class ForEachLoopDemo {

 public static void main(String... args) {

 List<Integer> list = List.of(5, 1, 4, 2, 3);

 for (Integer item : list) {

 System.out.println(item);

 }

 }

}

Listing 7-20 The forEach Loop Over a List<E>

This type of for statement is also called as having enhanced syntax and
executes the code block for each item in the collection used in its expression. This
means that it works on any implementation of Collection<E> interface, and it
works on arrays too. So the code given as example until now can also be written as
depicted in Listing 7-21.

package com.apress.bgn.seven.forloop;

import java.util.List;

public class ForLoopDemo {

 public static void main(String... args) {

 int arr[] = {5, 1, 4, 2, 3};

 for (int item : arr) {

 System.out.println(item);

 }

 }

}

Listing 7-21 The forEach Loop Over an Array

Clearly the best part in this case is that we no longer need a termination
condition or counter at all. Starting with Java 8, the name forEach can no longer
be used for the for statement with enhanced syntax, because the forEach default
method was added to all Collection<E> implementations. Combine that with
lambda expressions, and the code to print the elements of a list becomes the one in
Listing 7-22.

package com.apress.bgn.seven.forloop;

import java.util.List;

public class ForLoopDemo {

 public static void main(String... args) {

 List<Integer> list = List.of(5, 1, 4, 2, 3);

 list.forEach(item -> System.out.println(item));

 //or

 list.forEach(System.out::println);

 }

}

Listing 7-22 The forEach Method Used to Loop Over a List<E>

Pretty neat, right? But wait, there’s more: it works on arrays too, but a small
conversion to a suitable implementation of java.util.stream.BaseStream is
necessary �irst. This is provided by the Arrays utility class, which was enriched in
Java 8 with methods to support lambda expressions. So yes, the code with the arr
array written so far can be written starting Java 8 as shown in Listing 7-23.

package com.apress.bgn.seven.forloop;

import java.util.List;

public class ForLoopDemo {

 public static void main(String... args) {

 int arr[] = {5, 1, 4, 2, 3};

 Arrays.stream(arr).forEach(System.out::println);

 }

}

Listing 7-23 The forEach Method Used to Loop Over an Array

In Java 17, all the preceding examples will compile and will execute just �ine, so
use whatever syntax you prefer most when writing your solutions.

while Statement
The while statement is different from the for statement. There is not a �ixed
number of steps that have to be executed, so a counter is not always needed. The
number of repetitions a while statement executes depends only on how many
times the continuation condition that controls this number is evaluated to true. The
generic template for this statement is depicted in Listing 7-24.

while ([eval(condition)] == true) {

 [code_block]

}

Listing 7-24 The while Statement Template

A while statement does not really require an initialization statement either, but
if needed it can be inside the while code block, or outside it. The while statement
can replace the for statement, but the advantage of the for statement is that it
encapsulates the initialization, the termination condition, and the modi�ication of
the counter in a single block so that it is more concise. The array traversal code
sample can be rewritten using the while statement. The code is depicted in Listing
7-25:

package com.apress.bgn.seven.whileloop;

public class WhileLoopDemo {

 public static void main(String... args) {

 int arr[] = {5, 1, 4, 2, 3};

 int i = 0;

 while(i < arr.length) {

 System.out.println("arr[" + i + "] = " +

arr[i]);

 ++i;

 }

 }

}

Listing 7-25 The while Statement Used to Loop Over an Array

As you can see, the declaration and initialization of the counter variable int i
= 0; is done outside the while code block. The incrementation of the counter is
done inside the code block to be repeated. At this point, if we design the �lowchart
for this scenario, it will look the same as the one for the for statement depicted in
Figure 7-8. As incredible as it sounds, the [condition] is not mandatory either as
it can be replaced directly with true, but in this case you have to make sure there is
an exit condition inside the block of code that will de�initely be executed, otherwise
the execution will most likely end with an error, since the JVM will not allow an
in�inite loop. This condition must be placed at the beginning of the block of code, to
prevent the execution of the useful logic in a situation where it shouldn’t be. For our
simple example, clearly we do not want to call System.out.println for an
element with an index outside the array range, as depicted in Listing 7-26.

package com.apress.bgn.seven.whileloop;

public class AnotherLoopDemo {

 public static void main(String... args) {

 int arr[] = {5, 1, 4, 2, 3};

 int i=0;

 while(true){

 if (i >= arr.length) {

 break;

 }

 System.out.println("arr[" + i + "] = " +

arr[i]);

 ++i;

 }

 }

}

Listing 7-26 The while Statement Used to Loop Over an Array, Without a Continuation Expression

The while statement is best used when we are working with a resource that is
not always online. Let’s say we are using a remote database for our application that
is in a network that is unstable. Instead of giving up trying to save our data after the
�irst timeout, we could try until we succeed, right? This is being done by using a
while statement, which will keep trying to initialize a connection object in its code
block. The code looks roughly as depicted in Listing 7-27.

package com.apress.bgn.seven.whileloop;

import java.sql.*;

public class WhileConnectionTester {

 public static void main(String... args) throws Exception

{

 Connection con = null;

 while (con == null) {

 try {

 Class.forName("com.mysql.cj.jdbc.Driver");

 con = DriverManager.getConnection(

 "jdbc:mysql://localhost:3306/mysql",

 "root", "mypass");

 } catch (Exception e) {

 System.out.println("Connection refused.

Retrying in 5 seconds ...");

 Thread.sleep(5000);

 }

 }

 // con != null, do something

 Statement stmt = con.createStatement();

 ResultSet rs = stmt.executeQuery("select * from

user");

 while (rs.next()) {

 System.out.println(rs.getString(1) + " " +

rs.getString(2));

 }

 con.close();

 }

}

Listing 7-27 The while Statement Used to Repeatedly Try to Obtain a Database Connection

The problem with this code is that will run forever. If we want to give up trying
after a certain time, we have to introduce a variable counting the number of tries
and exit the loop using a break; statement, as shown in Listing 7-28.

package com.apress.bgn.seven.whileloop;

import java.sql.*;

public class AnotherWhileConnectionTester {

 public static final int MAX_TRIES = 10;

 public static void main(String... args) throws Exception

{

 int cntTries = 0;

 Connection con = null;

 while (con == null && cntTries < MAX_TRIES) {

 try {

 Class.forName("com.mysql.cj.jdbc.Driver");

 con = DriverManager.getConnection(

 "jdbc:mysql://localhost:3306/mysql",

 "root", "mypass");

 } catch (Exception e) {

 ++cntTries;

 System.out.println("Connection refused.

Retrying in 5 seconds ...");

 Thread.sleep(5000);

 }

 }

 if (con != null) {

 // con != null, do something

 Statement stmt = con.createStatement();

 ResultSet rs = stmt.executeQuery("select * from

user");

 while (rs.next()) {

 System.out.println(rs.getString(1) + " " +

rs.getString(2));

 }

 con.close();

 } else {

 System.out.println("Could not connect!");

 }

 }

}

Listing 7-28 The while Statement Used to Repeatedly Try to Obtain a Database Connection Until the
Number of Tries Expires

 As a rule of thumb, always make sure there is an exit condition when using
looping statements.

Since we’ve now covered all the statements needed to implement the Bubble
sort algorithm depicted in Figure 7-7, let’s see what the code looks like. Be aware
that this algorithm can be written in many ways, but the following code best
matches the explanation provided earlier. So while there are elements in the array
that are not in the proper order, the array is traversed again and again and adjacent

elements are swapped to �it the desired order—ascending, in this case. The simplest
version of the Bubble sort algorithm is depicted in Listing 7-29.

package com.apress.bgn.seven;

import java.util.Arrays;

public class BubbleSortDemo {

 public static final int arr[] = {5, 1, 4, 2, 3};

 public static void main(String... args) {

 boolean swapped = true;

 while (swapped) {

 swapped = false;

 for (int i = 0; i < arr.length - 1; ++i) {

 if (arr[i] > arr[i + 1]) {

 int temp = arr[i];

 arr[i] = arr[i + 1];

 arr[i + 1] = temp;

 swapped = true;

 }

 }

 }

 Arrays.stream(arr).forEach(System.out::println);

 }

}

Listing 7-29 The Simplest Version of the Bubble sort Algorithm

When run, the previous code swaps elements of the arr array until they are all
in ascending order, so the last line in the previous code prints the modi�ied arr:

1

2

3

4

5

do-while Statement
The do-while statement is similar to the while statement, with one difference:
the continuation condition is evaluated after executing the code block. This causes
the code block to be executed at least once, which is useful to show a menu, for
example, unless there is a condition embedded in it that prevents it. The generic
template for this statement is depicted in the Listing 7-30.

do {

 [code_block]

} while ([eval(condition)] == true)

Listing 7-30 The do-while Statement Template

Most times statements while and do-while can be easily interchanged, and
with minimum or no changes of the logic of the code block. For example, traversing
an array and printing the values of its elements can be written using do-while as
well, without changing the code block at all. In Figure 7-9 you can see the two
implementations side by side, the while on the left and do-while on the right.

Figure 7-9 while and do-while implementation for printing elements of an array

The �lowchart for these two examples is quite different, however, and reveals the
different logic of the two statements. You can compare them by taking a look at
Figure 7-10.

Figure 7-10 Comparison between while and do-while statements �lowcharts

In the examples in Figure 7-9, if the array is empty, the do-while statement
causes an ArrayIndexOutOfBoundsException exception to be thrown,
because the contents of the code block are executed even thought they shouldn’t be,
because the index value is equal to the array length (zero), but there is no element
with the index equal to 0, since the array is empty. However, because the condition
is evaluated after the code block, there’s no way to know that. In Figure 7-11 you
can see the previous code samples modi�ied to run with an empty array and the
output of each side by side.

Figure 7-11 while and do-while implementation for printing elements of an empty array

To �ix the do-while implementation to have the same behavior as the while
implementation, the code block execution must be conditioned by the array having
at least one element. Listing 7-31 shows one way to do it.

package com.apress.bgn.seven.whileloop;

public class DoWhileLoopDemo {

 public static void main(String... args) {

 int arr[] = new int[0];

 int i = 0;

 do {

 if(arr.length >=1) {

 System.out.println("arr[" + i + "] = " +

arr[i]);

 ++i;

 }

 } while (i < arr.length);

 }

}

Listing 7-31 do-while Statement Implementation That Works Correctly for an Empty Array Too

 The do-while statement works best when the code block must be

executed at least once, otherwise we evaluate the condition once unnecessarily.

The Bubble Sort algorithm introduced earlier is a good example where while
and do-while statements can be used interchangeably with no extra code
modi�ications.

Since it has been mentioned that there is more than one way to write this
algorithm, Listing in 7-32 shows an improved version that not only uses do-while,
but decreases the size of the array being traversed each time. This is possible
because according to Figure 7-7, after each traversal the last index of the array
holds the biggest number of the subset being traversed.

package com.apress.bgn.seven;

import java.util.Arrays;

public class BubbleSortDemo {

 public static final int arr[] = {5, 1, 4, 2, 3};

 public static void main(String... args) {

 boolean swapped = true;

 do {

 swapped = false;

 for (int i = 0, n = arr.length -1; i < n - 1;

++i, --n) {

 if (arr[i] > arr[i + 1]) {

 int temp = arr[i];

 arr[i] = arr[i + 1];

 arr[i + 1] = temp;

 swapped = true;

 }

 }

 } while (swapped);

 Arrays.stream(arr).forEach(System.out::println);

 }

}

Listing 7-32 Optimized Version of the Bubble Sort Algorithm Using do-while Statement

 The initialization and the step expressions in the for statement allow for
multiple terms separated by ‘,’. So the following code is valid and works just �ine.

for (int j = 0, k =2; j < 10; ++j, ++k) {

 System.out.println("composed indexes: [" + j + ", " + k
+ "]");

}

Remember the code sample that was trying to connect to a database that was in an
unstable network (Listing 7-27)? When while was used, the execution started by
testing to see if the connection was not null, but the connection was not even
initialized with a valid value yet. It’s illogical to perform that test, right? See the
snippet shown in Listing 7-33.

Connection con = null;

while (con == null) {

 try {

 Class.forName("com.mysql.cj.jdbc.Driver");

 con = DriverManager.getConnection(

 "jdbc:mysql://localhost:3306/mysql",

"root", "mypass");

 // some code omitted

Listing 7-33 while Implementation to Check Connection to a Database

This implementation, although functional, is a bit redundant, and the logic is not
really following best programming practices. A do-while implementation is most
suitable because it avoids the initial testing if the con instance is null, when there
is no way it could be otherwise. One variant of writing the code is depicted in
Listing 7-34.

package com.apress.bgn.seven.whileloop;

import java.sql.*;

public class DoWhileConnectionTester {

 public static final int MAX_TRIES = 10;

 public static void main(String... args) throws Exception

{

 int cntTries = 0;

 Connection con = null;

 do {

 try {

 Class.forName("com.mysql.cj.jdbc.Driver");

 con = DriverManager.getConnection(

 "jdbc:mysql://localhost:3306/mysql",

 "root", "mypass");

 } catch (Exception e) {

 ++cntTries;

 System.out.println("Connection refused.

Retrying in 5 seconds ...");

 Thread.sleep(5000);

 }

 } while (con == null && cntTries < MAX_TRIES);

 if (con != null) {

 Statement stmt = con.createStatement();

 ResultSet rs = stmt.executeQuery("select * from

user");

 while (rs.next()) {

 System.out.println(rs.getString(1) + " " +

rs.getString(2));

 }

 con.close();

 } else {

 System.out.println("Could not connect!");

 }

 }

}

Listing 7-34 do-while Implementation to Check Connection to a Database

Sure, skipping the evaluation of the condition a single time is not a big
optimization, but in a big application, every little optimization counts.

Breaking Loops and Skipping Steps

In the previous examples we have mentioned exiting a loop using the break;
statement, and a promise was made to come back and ad more details. There are
three ways to manipulate the behavior of a loop:

the break statement exits the loop and if accompanied by a label, will break the
loop that is labeled with it; this is useful when we have more nested loops,
because we can break from any of the nested loops, not just the one containing
the statement.
the continue statement skips the execution of any code after it and continues
with the next step.
the return statement is used to exit a method, so if the loop or if or a switch
statement is within the body of a method, it can be used to exit the loop as well.

 As for best practices, usage of return statements to exit a method should
not be abused, as they might make the execution �low dif�icult to follow.

break Statement
The break statement can only be used within switch, for, while, and do-
while statements. You have already seen how it can be used within the switch
statement, so let’s show you how to use it in all the others. Breaking out of a for,
while, or do-while loop can be done using the break statement, but it must be
controlled by an exit condition, otherwise no step will be executed. In Listing 7-35
we print only the �irst three elements in an array, even if the for loop is designed to
traverse all of them. If we get the index equal to 3, we exit the loop.

package com.apress.bgn.seven.forloop;

public class BreakingForDemo {

 public static final int arr[] = {5, 1, 4, 2, 3};

 public static void main(String... args) {

 for (int i = 0; i < arr.length ; ++i) {

 if (i == 3) {

 System.out.println("Bye bye!");

 break;

 }

 System.out.println("arr[" + i + "] = " +

arr[i]);

 }

 }

}

Listing 7-35 Breaking Out of a for Loop

If we have a case of nested loops, a label can be used to decide the looping
statement to break out of. As an example, in Listing 7-36 we have three nested for
loops, and we exit the middle loop when all indexes are equal.

package com.apress.bgn.seven.forloop;

public class BreakingNestedForLoopDemo {

 public static final int arr[] = {5, 1, 4, 2, 3};

 public static void main(String... args) {

 for (int i = 0; i < 2; ++i) {

 HERE: for (int j = 0; j < 2; ++j) {

 for (int k = 0; k < 2; ++k) {

 if (i == j && j == k) {

 break HERE;

 }

 System.out.println("(i, j, k) = (" + i

+ "," + j + "," + k + ")");

 }

 }

 }

 }

}

Listing 7-36 Breaking Out of a Nested for Loop

The label used in the previous code sample is named HERE and it is declared in
front of the for statement that is exited when the condition is ful�illed. The same
label follows the break statement. Writing label names with all all-caps letters is
considered a best practice in development, as it avoids confusing labels with
variables or class names when reading the code.

 Breaking loops with labels is actually pretty much frowned upon, since it
causes a code jump and makes the execution �low more dif�icult to follow. So if
you must do it, make sure your labels are visible.

To make sure this works, you can take a look in the console. You should see that
some combinations of (i, j, k) including the one with i = j = k are missing. The
output is listed here.

(i, j, k) = (1,0,0)

(i, j, k) = (1,0,1)

(i, j, k) = (1,1,0)

continue Statement
The continue statement does not break a loop, but can be used to skip certain
steps based on a condition. Essentially the continue statement stops the
execution of the current step of the loop and moves to the next one, so you could say
that this statement continues the loop. Let’s continue experimenting with the array
traversal example, and this time, let’s skip from printing the elements with odd
indexes by using the continue statement. The code is shown in Listing 7-37.

package com.apress.bgn.seven.forloop;

public class ContinueForDemo {

 public static final int arr[] = {5, 1, 4, 2, 3};

 public static void main(String... args) {

 for (int i = 0; i < arr.length; ++i) {

 if (i % 2 != 0) {

 continue;

 }

 System.out.println("arr[" + i + "] = " +

arr[i]);

 }

 }

}

Listing 7-37 Skipping Printing Elements with Odd Indexes Using a for Loop and continue Statement

Obviously, this statement must be conditioned, otherwise, the loop will just
iterate uselessly.

The continue statement can be used with labels too. Let’s take a similar
example to the three for nested loops used earlier, but this time, when the k index
is equal to 1, nothing is printed, and we skip to the next step of the loop enclosing
the k loop. The code is shown in Listing 7-38.

package com.apress.bgn.seven.forloop;

public class ContinueNestedForLoopDemo {

 public static final int arr[] = {5, 1, 4, 2, 3};

 public static void main(String... args) {

 for (int i = 0; i < 3; ++i) {

 HERE: for (int j = 0; j < 3; ++j) {

 for (int k = 0; k < 3; ++k) {

 if (k == 1) {

 continue HERE;

 }

 System.out.println("(i, j, k) = (" + i

+ "," + j + "," + k + ")");

 }

 }

 }

 }

}

Listing 7-38 Continue a Nested for Loop

To make sure this works, you can take a look in the console and see that what
combinations are printed, and we clearly notice that no combination with k=1 or
k=2 is printed. The output is listed here.

(i, j, k) = (0,0,0)

(i, j, k) = (0,1,0)

(i, j, k) = (0,2,0)

(i, j, k) = (1,0,0)

(i, j, k) = (1,1,0)

(i, j, k) = (1,2,0)

(i, j, k) = (2,0,0)

(i, j, k) = (2,1,0)

(i, j, k) = (2,2,0)

 The usage of labels to break out of loops is frowned upon in the Java
community, because jumping to a label resembles the goto statement that can
be found in certain old school programming languages. goto is a Java reserved
keyword, because this statement used to exist in the �irst version of the JVM, but
it was later removed. Using jumping makes code less readable, less testable, and
promotes bad design. That is why goto was removed in later versions, but any
need of such operation can be implemented break and continue statements.

return Statement
The return statement is an easy one: as already mentioned, it can be used to exit
the execution of a method body. If the method returns a value, the return
statement is accompanied by the value returned. The return statement can be used
to exit any of the statements mentioned in this section. It can represent quite a
smart way to shortcut the execution of a method, as the execution of the current
method stops, and processing continues from the point in the code that called the
method.

Let’s look at a few examples. The code in Listing 7-39 shows a method that �inds
the �irst even element in an array. If found the method returns its index; otherwise,
it returns -1.

package com.apress.bgn.seven;

public class ReturnDemo {

 public static final int arr[] = {5, 1, 4, 2, 3};

 public static void main(String... args) {

 int foundIdx = findEvenUsingFor(arr);

 if (foundIdx != -1) {

 System.out.println("First even is at: " +

foundIdx);

 }

 }

 public static int findEvenUsingFor(int ... arr) {

 for (int i = 0; i < arr.length; ++i) {

 if (arr[i] %2 == 0) {

 return i;

 }

 }

 return -1;

 }

}

Listing 7-39 Finding an Even Number Using the do-while Statement

The same method can be written using a while statement, but the purpose of
the return statement is the same. The code is shown in Listing 7-40.

// enclosing class omitted

public static int findEvenUsingWhile(int ... arr) {

 int i = 0;

 while (i < arr.length) {

 if (arr[i] % 2 == 0) {

 return i;

 }

 ++i;

 }

 return -1;

}

Listing 7-40 Finding an Even Number Using the while Statement

As you can see the return statement can be used in any situation when we
want to terminate the execution of a method if a condition is met.

Controlling the Flow Using try-catch Constructions
Exceptions and try-catch statements have been mentioned before in this book,
but not as tools to control �low execution. Before we skip to explanations and
examples, let’s �irst discuss the general template of a try-catch-finally
statement . This template is shown in Listing 7-41.

try {

 [code_block]

} catch ([exception_block]} {

 [handling_code_block]

} finally {

 [cleanup_code_block]

}

Listing 7-41 try-catch-finally Statement Template

The components of the template are explained in the following list:

[code_block] is the code block to execute.
[exception_block] is a declaration or more of an exception type that can be
thrown by the [code_block].
[handling_code_block] is an exception being thrown that marks an
unexpected situation that must be handled; once the exception is being caught,
this piece of code is executed to treat it, either by trying to return the system to a
normal state or by logging details about the cause of the exception.
[clean_up_code] is used to release resources or set objects to null so that
they are eligible for collection. When present, this block of code is executed
regardless of whether an exception is thrown or not.

Now that you know how a try-catch-finally works, you can probably
imagine how to use it to control the execution �low. Within the [code_block] you
can explicitly throw exceptions and decide how they are treated.

Considering the array that we have been using until now, we’ll design our piece
of code based on it again. Listing 7-42 shows a piece of code that throws an
exception when an even value is found.

package com.apress.bgn.seven.ex;

public class ExceptionFlowDemo {

 public static final int arr[] = {5, 1, 4, 2, 3};

 public static void main(String... args) {

 try {

 checkNotEven(arr);

 System.out.println("Not found, all good!");

 } catch (EvenException e) {

 System.out.println(e.getMessage());

 } finally {

 System.out.println("Cleaning up arr");

 for (int i = 0; i < arr.length; ++i) {

 arr[i] = 0;

 }

 }

 }

 public static int checkNotEven(int... arr) throws

EvenException {

 for (int i = 0; i < arr.length; ++i) {

 if (arr[i] % 2 == 0) {

 throw new EvenException("Did not expect an

even number at " + i);

 }

 }

 return -1;

 }

}

Listing 7-42 Controlling Flow Using Exceptions

The EvenException type is a custom exception type written for this speci�ic
example, and its implementation is not relevant here. If we execute this piece of
code the following will be printed:

Did not expect an even number at 2

Cleaning up arr

As you can see, by throwing an exception we’ve directed the execution to the
handling code, so "Not found, all good!" is not printed, and because there is a
finally block, that was executed as well. Yes, you can mix-and-match: use
different types of exceptions, and you can have multiple catch blocks whatever you
need to solve your problem. At a previous company I worked for we had a piece of
code that was validating a document and throwing different types of exceptions
depending on the validation check that was not passed, and in the finally block
we had a code that was converting the error object to PDF. The code looked similar
to that in Listing 7-43.

ErrorContainter errorContainer = new ErrorContainter();

try {

 validate(report);

} catch (FileNotFoundException | NotParsable e) {

 errorContainer.addBadFileError(e);

} catch (InvestmentMaxException e) {

 errorContainer.addInvestmentError(e);

} catch (CreditIncompatibilityException e) {

 errorContainer.addIncompatibilityError(e);

} finally {

 if (errorContainer.isEmpty()) {

 printValidationPassedDocument();

 } else {

 printValidationFailedDocument(errorContainer);

 }

}

Listing 7-43 Code Sample Showing a try-multi-catch Statement

The code in the finally code block was complex and totally not recommended
to be in there. However, sometimes in the real world the solutions do not always
respect best practices, or even common-sense practices. When dealing with legacy
code, you might �ind yourself in the position to write crappy but functional code
that solves the client’s problem—because sure, programming is awesome, but in the
eyes of some managers results are more important. If you are lucky enough to get a
job at a company that is looking to build on the code in the future or hand it to other
team members, you might actually end up with a manager who favors best
practices. Just remember to do your best and document everything properly, and
you’ll be �ine.

try-catch-finally blocks are quite powerful. They are a useful
construction for directing execution �low and printing useful information about the
overall status of the application and the source of an eventual problem. When
designed properly, exception handling can increase the quality and readability of
your code. There are a few rules to follow when designing them:

Try to avoid multiple catch blocks, unless there are used to treat different types of
exceptions differently.
Group together similar types of exceptions that are treated the same way using
the |(pipe) symbol. Support for this was added in Java 7.
Be careful when catching exceptions with related types. The �irst catch that
matches an exception type handles the exception, so superclasses should be
lower in the catch list. The compiler will even get really upset if the order is not
correct, as shown in Figure 7-12.

Figure 7-12 IntelliJ IDEA compile error and message showing the wrong order of exception types in a try-catch
block

And of course, you should also respect the basic rules of avoiding exception
swallowing and catching Throwable that were mentioned earlier in the book.

Summary
This chapter covered one of the most important things in development: how to
design your solutions, and the logic of it. You’ve also been introduced to what
�lowcharts are and their components as tools for deciding how to write your code
and how to control execution paths. And �inally, you’ve learned which statements to
use and when, and a few Java best practices have been mentioned, so that you will
be able to design the most suitable solutions to your problems. Java provides the
following:

simple and more complex ways to write if statements.
a switch statement that works with any primitive type, enumerations, and
starting with Java 7, String instances.
a switch expression that returns a value and that can be used to write more
complex statements.
a few ways to write for statements.
how to use forEach methods and streams to traverse a collection of values.
while statement, used when a step must be repeated until a condition is met.

do-while statement, used when a step must be repeated until a condition is
met and the step is repeated at least once, because the continuation condition is
evaluated after it.
how to manipulate loop behavior by using statements such as break,
continue, and return.
how to control the execution �low by using try-catch-finally
constructions.

(1)

© Iuliana Cosmina 2022
I. Cosmina, Java 17 for Absolute Beginners
https://doi.org/10.1007/978-1-4842-7080-6_8

8. The Stream API

Iuliana Cosmina1

Edinburgh, UK

The term stream has more than one meaning, as explained on dictionary.com:

1.
a body of water �lowing in a channel or watercourse, as a river, rivulet, or brook

2.
a steady current in water, as in a river or the ocean

3.
any �low of water or other liquid or �luid

4.
a current or �low of air, gas, or the like

5.
a continuous �low or succession of anything

6.
prevailing direction; drift

7.
Digital Technology a �low of data, as an audio broadcast, a movie, or live video, transmitted smoothly
and continuously from a source to a computer, mobile device, and so on.

When it comes to programming, the de�initions that are closer to what a stream is, are number 5 and a

part of number 7 from the previous list. Indeed, a stream is a sequence of objects from a source which
supports aggregate operations. In your mind you would be saying right now, so a collection? Well . . . not
quite.

Introduction to Streams
Consider a really big collection of songs that we want to analyze and �ind all songs with duration of at least
300 seconds. For these songs, we want to save the names in a list and sort them in decreasing order of their
duration. Assuming we already have the songs in a list, the code looks like Listing 8-1:

// non-relevant code omitted

List<Song> songList = loadSongs();

List<Song> resultedSongs = new ArrayList<>();

//find all songs with duration of at least 300 seconds

for (Song song: songList) {

 if (song.getDuration() >= 300) {

 resultedSongs.add(song);

 }

}

Collections.sort(resultedSongs, new Comparator<Song>(){

 public int compare(Song s1, Song s2){

 return s2.getDuration().compareTo(s1.getDuration());

 }

https://doi.org/10.1007/978-1-4842-7080-6_8
http://dictionary.com/

});

System.out.println(resultedSongs);

List<String> finalList0 = new ArrayList<>();

for (Song song: resultedSongs) {

 finalList0.add(song.getTitle()); // only the song title is required

}

System.out.println("Before Java 8: " + finalList0);

Listing 8-1 Java Code Made of a Few Statements

One of the problems with this code is that processing large collections is not really ef�icient. Also, we are
traversing lists over and over again and performing checks to get to a �inal result. Wouldn’t it be more
ef�icient if we could execute all those operations on every element one by one, without repeated traversals?
It would be, and it is possible to do it so starting with Java 8.

The new Stream abstraction introduced in Java 8 represents a sequence of elements that can be
processed sequentially or in parallel and supports aggregate operations. Because of the latest evolutions in
hardware development, CPUs have become more powerful and more complex, containing multiple cores
that can process information in parallel. To make use of these hardware capabilities, in Java, the Fork Join
Framework was introduced. And in Java 8, the Stream API was introduced to support parallel data
processing, without the boiler-code of de�ining and synchronizing threads.

The central interface of the Stream API is the java.util.stream.BaseStream. Any object with
stream capabilities is of a type that extends it. A stream does not store elements itself; it is not a data
structure, it is just used to compute elements and serve them on-demand to an operation or a set of
aggregate operations.

Aggregate operations are special methods in the Stream API with the following characteristics:

they support behavior as parameters. Most aggregate operations support lambda expressions as
parameters.
they use internal iteration. Internal iteration does not go over the elements sequentially, thus taking
advantage of parallel computing. Internal iteration splits a problem into subproblems, solves them
simultaneously, then combines the results.
they process the elements from a stream, not directly from the stream origin.

Serving the elements in a sequence involves an internal automatic iteration. Operations that return a
stream can be chained in a pipeline and are called intermediate operations . Operations process elements
of a stream and return the result as a stream to the next operation in the pipeline. Operations that return a
result that is not a stream are called terminal operations and are normally present at the end of a pipeline.
As a quick example before getting deeper, using streams the code in Listing 8-1 is written as depicted in
Listing 8-2.

List<String> finalList = songList.stream()

 .filter(s -> s.getDuration() >= 300)

 .sorted(Comparator.comparing(Song::getDuration).reversed())

 .map(Song::getTitle)

 .collect(Collectors.toList());

System.out.println(finalList);

Listing 8-2 Code in Listing 8-1 Rewritten with Streams

Yes, programming with streams is awesome. The Stream API concept allows developers to transform
collections into streams and write code to process the data in parallel and then getting the results into a new
collection.

Working with streams is quite a sensitive way of programming, and it is recommended to design the
code taking every possibility in mind. NullPointerException is one of the most common exceptions to
be thrown in Java.

In Java 8, the class Optional<T> was introduced to avoid this type of exceptions. Stream<T>
instances are used to store an in�inite instances of type T, while Optional<T> is an instance that might or

might not contain an instance of type T. Because both of these implementations are basically wrappers for
other types, they will be covered together.

 For practical reasons, Stream instances will be referred in this chapter as streams, in a similar
manner that List instances are referred as lists and collection instances as collections, and many more.

 You might notice that the term function was introduced and is used to refer to the behavior proved
as argument to stream operations. This is because working with streams allows for Java code to be
written in Functional Programming style. It was mentioned at the beginning of this book that Java is an
object-oriented programming language, and the object was its core term. In functional programming the
core term is pure function and code is written by composing pure functions, which allow to avoid shared
state, take advantage of immutable data and thus avoid side-effects of processing contamination.1

Pure functions, are software analogues of mathematical functions and have the following properties:

pure functions return identical values for identical arguments. The implementation does not involve any
random value, or non�inal global variables that might cause a different value to be returned for the same
arguments. Pure functions must produce consistent results.
the return value of the function depends only on the input parameters passed to the function.
pure functions have no side-effects.(no mutation of local static variables, nonlocal variables, mutable
reference arguments, or input/output streams).

The combination of streams, pure functions, and lambda expressions facilitates writing Java declarative
code. In this chapter we leave behind the typical object-oriented imperative coding style , where each step
of the algorithm is declared one after the other, and the �low controlled by boolean conditions. Unstead we
start designing the chain of pure functions applied to elements of streams.

Creating Streams
Before having fun and optimizing our code using streams, let’s see how we can create them. To create a
stream we obviously need a source. That source can be anything: a collection (list, set, or map), an array, or
I/O resources used as input (such as �iles, databases, or anything that can be transformed into a sequence of
instances).

A stream does not modify its source, so multiple stream instances can be created from the same source
and used for different operations.

The biggest difference between collections and streams is that the elements emitted by the stream are
consumed by the operations and thus the stream cannot be used more than once. The code here is accepted
by the Java compiler.

int[] arr = { 50, 10, 250, 100};

IntStream intStream = Arrays.stream(arr);

intStream.forEach(System.out::println);

intStream.forEach(System.out::println);

However, an IllegalStateException is thrown at runtime when we try traversing the stream a
second time.

Exception in thread "main" java.lang.IllegalStateException: stream has

already been operated upon or closed at

java.base/java.util.stream.AbstractPipeline.

sourceStageSpliterator(AbstractPipeline.java:279) at java.base/java.util.

stream.IntPipeline$Head.forEach(IntPipeline.java:617) at chapter.eigth/com.

apress.bgn.eight.StreamRecyclingDemo.main(StreamRecyclingDemo.java:44)

If you need to process the elements of a stream twice, you have to recreate it from the source again.

Creating Streams from Collections
In the introduction of this chapter, the code snippet in Listing 8-2 depicted one method of creating a stream
from a list. Starting with Java 8, all collection interfaces and classes were enriched with default methods that
return streams. In Listing 8-3, we take a list of integers and transforming it into a stream by calling the
stream() method . After having a stream, we traverse it using the forEach(..) method to print the
values in the stream, and the name of the execution thread this code is executed on. Why the thread name,
you ask? You will see shortly.

package com.apress.bgn.eigth;

import java.util.List;

public class IntegerStreamDemo {

 public static void main(String... args) {

 List<Integer> bigList = List.of(50, 10, 250, 100 /*, ... */);

 bigList.stream()

 .forEach(i ->

 System.out.println(Thread.currentThread().getName() + ":

" + i)

);

 }

}

Listing 8-3 Creating a Stream of Integer Values from a List of Integers

The preceding code creates a stream of integer elements. The Stream<T> interface exposes a set of
methods that each Stream<T> implementation provides a concrete implementation for. The most used is
the forEach(..) method that iterates over the elements in the stream. The forEach(..) method
requires a parameter of type java.util.function.Consumer<T>.

 A consumer is what we call in this book an inline implementation of the
java.util.function.Consumer<T> functional interface. This interface declares an abstract
method that a class implementing it has to provide a concrete implementation for. This interface is
annotated with @FunctionalInterface for this same reason. The method is named accept(T t),
and is referred to as a functional method. It takes an element of type T as argument, processes it, and
returns nothing. For this reason, consumer functions are suitable for the end of a functional pipeline.

This consumer method is called for each element in the stream. The implementing class is basically
declared inline, by only mentioning the body of the method. The JVM does the rest, because of the magic of
lambda expressions. Without them, you would have to write code like the one in Listing 8-4.

package com.apress.bgn.eigth;

import java.util.List;

import java.util.function.Consumer;

public class IntegerStreamDemo {

 public static void main(String... args) {

 List<Integer> bigList = List.of(50, 10, 250, 100 /*, ... */);

 bigList.stream().forEach(

 new Consumer<Integer>() {

 @Override

 public void accept(Integer i) {

 System.out.println(Thread.currentThread().getName() + ":

" + i);

 }

 });

 }

}

Listing 8-4 Expanded Declaration of a Consumer

This was the way you would write code before lambda expressions were introduced in Java 8. When
classes implement interfaces this way, inline, using a syntax that looks a lot like a constructor call using the
interface type; they are called anonymous classes , because they don’t have a name, and they are used
exactly where declared. Lambda expressions simpli�ied this process a lot, but only for interfaces that de�ine
one single method, the interfaces named functional interfaces . These interfaces were annotated with
@FunctionalInterface annotation starting with Java 8. In the previous example the code prints the
thread name and the value of the element. The result is of running that code is depicted here:

main: 50

main: 10

main: 250

main: 100

...

The fact that each number is pre�ixed with main means that all integers in the stream are processed
sequentially by the same thread, the main thread of the application.

 For practical reasons, for collections there is no need to call stream() when a sequential stream is

needed only for traversal, because the forEach(..) method de�ined for them does the job just well. So
the preceding code can be reduced to:

bigList.forEach(i ->

 System.out.println(Thread.currentThread().getName() + ": " + i)

);

The name of the thread was printed because there is another way to create a stream: by calling the
parallelStream() method. The only difference is that the returned stream is a parallel stream. What
this means is that each element of the stream is processed on a different thread. This means the
implementation of the Consumer<T> must be thread-safe and not contain code that involves instances that
are not meant to be shared amongst threads. The code to print the value of a stream element does not affect
the value of the element returned by the stream, nor other external object, so it is safe to parallelize. Listing
8-5 depicts the use of parallelStream() instead of stream() to create a stream and print the elements
of the stream using the same Consumer <T> implementation. The output is depicted at the bottom of the
snippet.

package com.apress.bgn.eigth;

import java.util.List;

import java.util.function.Consumer;

public class IntegerStreamDemo {

 public static void main(String... args) {

 List<Integer> bigList = List.of(50, 10, 250, 100 /*, ... */);

 bigList.parallelStream()

 .forEach(i ->

 System.out.println(Thread.currentThread().getName() + ": " +

i)

);

 }

}

// output

main: 83

ForkJoinPool.commonPool-worker-1: 23

main: 33

ForkJoinPool.commonPool-worker-1: 45

ForkJoinPool.commonPool-worker-2: 50

main: 67

...

Listing 8-5 Creating a Parallel Stream of Integer Values from a List of Integers

The �irst thing you will notice is the thread name: we no longer have one, but a lot of them all named
ForkJoinPool.commonPool-worker-**. The main thread still prints some values, but the other threads do
some the work too, and the order—or more like the disorder—of the printed values makes it clear that the
threads run in parallel. The threads have similar names that makes it obvious that they are all part of the
same thread pool. A thread pool is created by the JVM in this case to contain a few thread instances used to
process all elements in the stream in parallel. The advantage of using a thread pool is that the threads can be
reused, so no new thread instances need to be created and this optimizes the execution time a little.

 Performance improvements when using parallelStream() become obvious for more complex
solutions. For this simple example, creating a thread pool and managing the threads is actually a waste of
CPU and memory. So unless the operation performed for each element in the stream is complex enough
for parallel execution to improve performance, avoid using parallelStream().

If you look at the number associated to each thread, the number at the end of the thread name, you can
see that the numbers sometimes repeat. This basically means the same thread is reused to process another
stream element.

Creating Streams from Arrays
For the previous code samples, the source for our streams is represented by a List<T> instance. The same
syntax is used with Set<T> instances as well.

But streams can be created from arrays as well. Just look at Listing 8-6:

package com.apress.bgn.eigth;

import java.util.Arrays;

public class ArrayStreamDemo {

 public static void main(String... args) {

 int[] arr = { 50, 10, 250, 100 /* ... */};

 Arrays.stream(arr).forEach(

 i -> System.out.println(Thread.currentThread().getName() +

": " + i)

);

 }

}

Listing 8-6 Creating a Stream of Integer Values from an Array of Integers

The static method stream(int[] array) was added to the java.util.Arrays utility class in
Java 1.8 and is used in the previous code listing to create a stream of primitives.

For arrays that contain objects, the method called is stream(T[] array), where T is a generic type,
that replaces any reference type (also added in Java 1.8). Streams generated from arrays can be parallelized,
by calling the same parallel() method.

The novelty with arrays is that a stream can be created from a part of the array by specifying the start
and the end indexes for the array chunk. The code in Listing 8-7 shows the creation of a stream from a part
of the array and the output of printing the elements of the resulting stream using a simple consumer.

package com.apress.bgn.eigth;

import java.util.Arrays;

public class ArrayStreamDemo {

 public static void main(String... args) {

 int[] arr = { 50, 10, 250, 100, 23, 45, 33, 55 /* ... */};

 Arrays.stream(arr, 3,6).forEach(

 i -> System.out.println(Thread.currentThread().getName() +

": " + i)

);

 }

}

// output

main: 100

main: 23

main: 45

Listing 8-7 Creating a Stream of Integer Values from an Array of Integers

Creating Empty Streams
When writing Java code , a good practice is to write methods that return objects and avoiding returning
null. This to reduces the possibility of NullPointerExceptions being thrown. When methods return
streams, the preferred way is to return an empty stream. This can be done by calling the static
Stream.empty() method provided by the Stream<T> interface.

The code snippet in Listing 8-8 depicts a method that takes a list of Song instances argument and
returns a stream using it as a source. If the list is null or empty, an empty stream is returned. The resulted
stream is traversed in the main(..) method, without additional veri�ication. If the stream is empty,
nothing will be printed.

package com.apress.bgn.eigth;

import com.apress.bgn.eigth.util.*;

import java.util.List;

import java.util.stream.Stream;

public class SongStreamDemo {

 public static void main(String... args) {

 System.out.println(" -- Testing 'getAsStream(..)' method with null --

 getAsStream(null).forEach(System.out::println);

 System.out.println(" -- Testing 'getAsStream(..)' method with empty li

 getAsStream(List.of()).forEach(System.out::println);

 System.out.println(" -- Testing 'getAsStream(..)' method with a list -

 getAsStream(StreamMediaLoader.loadSongsAsList()).forEach(System.out::p

 }

 public static Stream<Song> getAsStream(List<Song> songList) {

 if(songList == null || songList.isEmpty()) {

 return Stream.empty();

 } else {

 return songList.stream();

 }

 }

}

// output

 -- Testing 'getAsStream(..)' method with null --

 -- Testing 'getAsStream(..)' method with empty list --

 -- Testing 'getAsStream(..)' method with a list --

Song{id=1, singer='John Mayer', title='New Light', duration=206, audioType=FLA

Song{id=2, singer='John Mayer', title='My Stupid Mouth', duration=225, audioTy

...

Listing 8-8 Creating a Stream of Integer Values from an Array of Integers

Running the previous code results in the �irst two messages being printed one after the other with
nothing in between, since the stream returned by the method is empty .

Creating Finite Streams
Aside from creating streams from actual sources , streams can be created on the spot by calling stream
utility methods like Stream.generate(..) or Stream.builder(). The builder() method should
be used when building a limited stream with a �ixed sets of known values. This method returns an instance
of java.util.stream.Stream.Builder<T>, an internal interface that declares a default method
named add(T t)that needs to be called to add the elements of the stream. To create the Stream <T>
instance, its build() method must be �inally called. The add(T t)method returns a reference to the
Builder<T> instance, so it can be chained with any other methods of this interface. The code in Listing 8-9
is a sample of how the builder() method can be used to create a �inite stream of various values.

package com.apress.bgn.eigth;

import com.apress.bgn.eigth.util.AudioType;

import com.apress.bgn.eigth.util.Song;

import java.util.stream.Stream;

public class FiniteStreamsDemo {

 public static void main(String... args) {

 Stream<Integer> built = Stream.<Integer>builder()

 .add(50).add(10).add(250)

 .build();

 Stream<String> lyrics = Stream.<String>builder()

 .add("In a world where people never meet,")

 .add("They fall in love looking at some screen")

 .add("And love can only be one-sided")

 .add("Bitter, burning unrequited.")

 .build();

 Stream<Song> songs = Stream.<Song>builder()

 .add (new Song("John Mayer", "New Light", 206,

AudioType.FLAC))

 .add (new Song("Ben Barnes", "You find me", 420,

AudioType.FLAC))

 .build();

 Stream data = Stream.builder() // compiler warns about raw use of

parameterized class 'Stream'

 .add("Vultures")

 .add(3)

 .add(List.of("aa"))

 .build();

 }

}

Listing 8-9 Creating Streams from Finite Sets of Values

As the Builder<T> interface is a generic one, it is mandatory to specify a type argument, as the type of
the elements in the stream. Also, the builder() method is generic and requires the type to be provided as
a parameter in front of it, right before being called. If no type is speci�ied the default Object is used, and
instances of any type can be added to the stream (as shown in the fourth stream declaration). However, the
compiler warns about raw use of parameterized class 'Stream'.

To create a stream, there is another method named generate(..). This method requires an argument
of type java.util.function.Supplier<T>.

 A supplier is what we call in this book an inline implementation of the
java.util.function.Supplier<T> functional interface. This interface requires a concrete
implementation to be provided for its single method named get(). This method should return the
element to be added to the stream.

So if we want to generate a stream of integers, a proper implementation for get() should return a
random integer. The expanded code is depicted in Listing 8-10. Lambda expressions are not used to make it
clear that the generate(..) method receives as a parameter a Supplier<Integer> instance created
on the spot.

package com.apress.bgn.eigth;

import java.util.stream.Stream;

public class FiniteStreamsDemo {

 public static void main(String... args) {

 Stream<Integer> generated = Stream.generate(

 new Supplier<Integer>() {

 @Override

 public Integer get() {

 Random rand = new Random();

 return rand.nextInt(300) + 1;

 }

 }).limit(15);

 }

}

Listing 8-10 Creating Stream Using a Supplier

The limit(15) method limits the number of elements generated by the supplier to 15, otherwise the
generated stream will be in�inite. The code in Listing 8-10 can be simpli�ied by using lambda expressions as
depicted in Listing 8-11.

package com.apress.bgn.eigth;

import java.util.stream.Stream;

public class FiniteStreamsDemo {

 public static void main(String... args) {

 Stream<Integer> generated = Stream.generate(

 () -> {

 Random rand = new Random();

 return rand.nextInt(300) + 1;

 }).limit(15);

 }

}

Listing 8-11 Creating Stream Using a Supplier and Lambda Expressions

If Supplier<Integer>.get() always returns the same number, no matter how useless such a
stream might be, the previous declaration becomes:

Stream<Integer> generated = Stream.generate(() -> 5).limit(15);

If more control is needed over the elements emitted by a Stream<T> instance, the iterate(..)
method can be used. There are two versions of this method, one added in Java 8 and one in Java 9. Using any
of these methods is like having a for statement generate the entries for the stream.

The Java 8 version is used to generate an in�inite stream. This version of the method receives as
arguments an initial value called a seed and an iteration step.

The Java 9 version is used to generate an �inite stream. This version of the method receives as arguments
an initial value called a seed, a predicate that determines when the iteration should stop, and an
iteration step.

 A predicate is an inline implementation of the functional interface
java.util.function.Predicate<T>, which declares a single method named test(T t) that
returns a boolean value. The implementation of this method should test its single argument of type T
against a condition and returns true if the condition is ful�illed and false if not.

 The iteration step is an inline implementation of the functional interface
java.util.function.UnaryOperator<T> used to represent an operation on a single operand that
produces a result of the same type as its operand.

In the following example, stream elements are generated starting from 0, using a step of 5, and they are
generated as long as the values are lesser than 50, as de�ined by the predicate.

Stream<Integer> iterated = Stream.iterate(0, i -> i < 50 , i -> i + 5);

Just as with the for statement, the termination condition is not mandatory, and without it you would be
calling the version of this method introduced in Java 8, but in this case the limit(..) method must be
used to make sure the stream is �inite.

Stream<Integer> iterated = Stream.iterate(0, i -> i + 5).limit(15);

In Java 9 beside the limit(..) method there is another way to control the numbers of values in a
stream: the takeWhile(..) method . This method takes the longest set of elements from the original
stream that match the predicate received as argument, starting with the �irst element. This works �ine for
ordered streams, but if the stream is unordered the result is any set of elements that matches the predicate,

including an empty one. To explain the different streams resilted by calling takeWhile(..), the concept of
order for streams has to be discussed �irst.

The expression encounter order represents the order in which a Stream<T> encounters data. The
encounter order of a stream is de�ined by the source and intermediate operations. For example: if an array is
used as a source the encounter order of the stream is de�ined by the ordering in the array. If a list is used as a
source, the encounter order is the list’s iteration order. If a set is used as a source, then there is no encounter
order, because a set is inherently unordered.

Each intermediate operation in a stream pipeline acts on the encounter order adn the effects are as
follows:

an encounter order could be imposed on the output. For example the sorted() operation imposes an
encounter order on an unordered stream.
the encounter order is preserved. Some operations like filter(..) might drop a few elements, but the
original order is unaffected.
the encounter order is destroyed. For example the sorted() operation imposes an encounter order on
an ordered stream, replacing the existing one.

Collector operations preserve encounter order if accumulating elements into a container with an
encounter order. Sequential and parallel streams have the same properties with respect to ordering.

Listing 8-12 shows two usages of the takeWhile(Predicate<? super T> predicate) method.

package com.apress.bgn.eight;

import java.util.stream.Stream;

public class FiniteStreamsDemo {

 public static void main(String... args) {

 // (1)

 Stream<Integer> orderedStream = List.of(3, 6, 9, 11, 12, 13,

15).stream();

 Stream<Integer> result = orderedStream.takeWhile(s -> s % 3 == 0);

 result.forEach(s -> System.out.print(s + " "));

 // output: 3 6 9

 // (2)

 Stream<Integer> unorderedStream = Set.of(3, 6, 9, 2, 4, 8, 12, 36,

18, 42, 11, 13).stream();

 result = unorderedStream

.parallel() // this does not affect results

.takeWhile(s -> s % 3 == 0);

 result.forEach(s -> System.out.print(s + " "));

 // output (maybe): 3 12 36

 }

}

Listing 8-12 Creating Stream Using a Supplier and the takeWhile(..) Method

The �irst code chunk uses takeWhile(..) on an ordered stream of integers and returns a stream with
elements that divide by 3. The resulted stream contains the elements 3 6 9 because this is the �irst set of
elements that match the given predicate.

If takeWhile(..), is called on an unordered stream (parallel or not) as depicted in the second code
chunk, the result will be unpredictable. The result might be 3 12 36 or 12 36 18 42, as the result is a subset
of any elements matching the predicate. Also, since the order is not �ixed, the code chunk might end up
printing 6 3 9, or 18 42, and so on. So the result of takeWhile(..) on an unordered stream is
nondeterministic.

The takeWhile(..) operation is the “sister” of the dropWhile(..), also introduced in Java 9. As its
name says this does exactly the reverse of what takeWhile(..) does: it returns, for an ordered stream, a

new stream consisting elements after dropping the longest set of elements that matches the predicate. For
an unordered stream, there is only chaos, any subset of elements matching the predicate can be dropped
including the empty stream. Listing 8-13 shows two usages of the dropWhile(..) method .

package com.apress.bgn.eigth;

import java.util.stream.Stream;

public class FiniteStreamsDemo {

 public static void main(String... args) {

 Stream.of(3, 6, 9, 11, 12, 13, 15)

 .dropWhile(s -> s % 3 == 0)

 .forEach(s -> System.out.print(s + " "));

 // output: 11 12 13 15

 Stream.of(3, 6, 9, 2, 4, 8, 12, 36, 18, 42, 11, 13)

 .dropWhile(s -> s % 3 == 0)

 .parallel() // this does not affect results

 .forEach(s -> System.out.print(s + " "));

 // output (maybe): 11 9 8 6 4 2 42 13 36

 }

}

Listing 8-13 Creating Stream Using a Supplier and the dropWhile(..) Method

If these two operations are applied to parallel streams, the only thing that changes is the order in which
the elements are printed, but the result sets will contain the same elements.

Streams of Primitives and Streams of Strings
When we �irst created a stream of primitives we used an int[] array as a source. However, streams of
primitives can be created in many ways, because the Stream API contains more interfaces with default
methods to make programming with streams practical. In Figure 8-1 you can see the stream interfaces
hierarchy.

Figure 8-1 Stream API interfaces

As you probably imagine after looking at the previous image, the IntStream interface can be used to
create primitive streams of integers. This interface exposes many methods to do so, some of them inherited
from BaseStream<T,S>. An IntStream instance can be created from a few values speci�ied on the spot,
either by using the builder(), generate(..), or iterate(..) method or by using the of range*
(..) methods, as depicted in Listing 8-14.

package com.apress.bgn.eigth;

import java.util.Random;

import java.util.stream.IntStream;

public class NumericStreamsDemo {

 public static void main(String... args) {

 IntStream intStream0 =

IntStream.builder().add(0).add(1).add(2).add(5).build();

 IntStream intStream1 = IntStream.of(0,1,2,3,4,5);

 IntStream intStream2 = IntStream.range(0, 10);

 IntStream intStream3 = IntStream.rangeClosed(0, 10);

 Random random = new Random();

 IntStream intStream4 = random.ints(5);

 }

}

Listing 8-14 Creating IntStream Instances Using Various Methods

An IntStream instance can be created by giving the start and end of an interval as arguments to the
range(..) and rangeClosed(..) methods. Both of them generate elements for the stream, with a step
of 1, only the last one includes the upper range of the interval as a value.

Also, in Java 1.8 the java.util.Random class was enriched with a method named ints(..) that
generates a stream of random integers. It declares a single argument that represents the number of
elements to be generated and put in the stream, but there is a form of this method without the argument
that generates an in�inite stream.

All the methods mentioned for IntStream can be used to generate LongStream instances , as
equivalent methods are de�ined in this interface as well.

For DoubleStream there are no range methods, but there is the of(..) method, builder(),
generate(..), and so on. Also, the java.util.Random class was enriched in Java 1.8 with the
doubles(..) method that generates a stream of random double values. It declares a single argument that
represents the number of elements to be generated and put in the stream, but there is a form of this method
without the argument that generates an in�inite stream. In Listing 8-15, a few ways of creating streams of
doubles are depicted.

package com.apress.bgn.eigth;

import java.util.Random;

import java.util.stream.DoubleStream;

public class NumericStreamsDemo {

 public static void main(String... args) {

 DoubleStream doubleStream0 = DoubleStream.of(1, 2, 2.3, 3.4, 4.5,

6);

 Random random = new Random();

 DoubleStream doubleStream1 = random.doubles(3);

 DoubleStream doubleStream2 = DoubleStream.iterate(2.5, d -> d = d +

0.2).limit(10);

 }

}

Listing 8-15 Creating Numeric Stream Instances Using Various Methods

For streams of char values there is no special interface, but IntStream can be used just �ine.

IntStream intStream = IntStream.of(’a’,’b’,’c’,’d’);

intStream.forEach(c -> System.out.println((char) c));

Another way to create a stream of char values is to use a String instance as a stream source.

IntStream charStream = "sample".chars();

charStream.forEach(c -> System.out.println((char) c));

In Java 8, the java.util.regex.Pattern was enriched with stream speci�ic methods too; as a class
used to process String instances, it is the proper place to add these methods after all. A Pattern instance
is useful for splitting an existing String instance and return the pieces as a stream using the
splitAsStream(..) method.

Stream<String> stringStream = Pattern.compile(" ")

 .splitAsStream("live your life");

The contents of a �ile can also be returned as a stream of strings using the Files.lines(..) utility
method.

String inputPath = "chapter08/src/main/resources/songs.csv";

Stream<String> stringStream = Files.lines(Path.of(inputPath));

The sections so far have shown how to create all types of streams, the next sections will show you how to
use them to process data.

 If you feel the need to associate stream instances with real objects to make sense of them, I
recommend the following: imagine a �inite stream (like one created from a collection) as the water
dripping from a mug when inclined. The water in the mug will end eventually, but while the water drips, it
forms a stream. An in�inite stream is like a river that has fountain head, it �lows continuously (unless a
serious drought dries the river, of course).

Short Introduction to Optional<T>
The java.util.Optional<T> instances are the Schrödinger2 boxes of the Java Language. They are very
useful because they can be used as a return type for methods to avoid returning a null value, and cause
either a possible NullPointerException to be thrown, or the developer using the method to write extra
code to treat the possibility of an exception being thrown. Optional<T> instances can be created in
similar way to streams.

There is an empty() method for creating an optional value of any type that does not contain anything.

Optional<Song> empty = Optional.empty();

There is an of() method used to wrap an existing object into an Optional<T>.

Optional<Long> value = Optional.of(5L);

Considering that these type of instances are designed not to allow null values, the way the
Optional<T> instance was created previously, stops us from writing something like this:

Song song = null;

Optional<Song> nonNullable = Optional.of(song);

The compiler doesn’t mind, but at runtime when the code is executed, a NullPointerException will
be thrown. Still, if we really need an Optional<T> instance to permit null values, it is possible; there’s a
utility method named ofNullable(T t) that was introduced in Java 9 just for that purpose:

Song song = null;

Optional<Song> nullable = Optional.ofNullable(song);

Now that we have Optional<T> instances, what can we do with them? We use them. Look at the code
in Listing 8-16.

package com.apress.bgn.eigth;

import com.apress.bgn.eigth.util.MediaLoader;

import com.apress.bgn.eigth.util.Song;

import java.util.List;

public class NonOptionalDemo {

 public static void main(String... args) {

 List<Song> songs = MediaLoader.loadSongs();

 Song song = findFirst(songs, "B.B. King");

 if(song != null && song.getSinger().equals("The Thrill Is Gone")) {

 System.out.println("Good stuff!");

 } else {

 System.out.println("not found!");

 }

 }

 public static Song findFirst(List<Song> songs, String singer) {

 for (Song song: songs) {

 if (singer.equals(song.getSinger())) {

 return song;

 }

 }

 return null;

 }

}

Listing 8-16 Code Showing the Necessity of Optional<T>

The findFirst(..) method looks for the �irst song in the list that has the singer equal to “B.B. King”,
returns it and prints a message if found, and another if not. Notice the nullability test and iteration of the list
in the previous code listing. In Java 8, both of them are no longer necessary. Listing 8-17 depicts the code in
Listing 8-16 redesigned to use Optional<T>.

package com.apress.bgn.eigth;

import com.apress.bgn.eigth.util.MediaLoader;

import com.apress.bgn.eigth.util.Song;

import java.util.List;

import java.util.Optional;

public class OptionalDemo {

 public static void main(String... args) {

 List<Song> songs = MediaLoader.loadSongs();

 Optional<Song> opt = songs.stream()

 .filter(s -> "B.B. King".equals(s.getSinger()))

 .findFirst();

 opt.ifPresent(r -> System.out.println(r.getTitle()));

 }

}

Listing 8-17 Code Showing Usage of Optional.ifPresent(..)

If the Optional<T> instance is not empty, the song title will be printed; otherwise, nothing will be
printed and the code will continue from that point on without an exception being thrown. But what if we
want to print something when the Optional<T> instance is empty? In Java 11 we can do something about

that, because a method named isEmpty() was introduced to test the Optional<T> instance contents
(Listing 8-18).

package com.apress.bgn.eigth;

import com.apress.bgn.eigth.util.MediaLoader;

import com.apress.bgn.eigth.util.Song;

import java.util.List;

import java.util.Optional;

public class OptionalDemo {

 public static void main(String... args) {

 List<Song> songs = MediaLoader.loadSongs();

 Optional<Song> opt1 = songs.stream()

 .filter(s -> "B.B. King".equals(s.getSinger()))

 .findFirst();

 if(opt1.isEmpty()) {

 System.out.println("Not found!");

 }

 }

}

Listing 8-18 Code Showing Usage of Optional.isEmpty()

But wait, this is a little bit . . . not right. Can’t we just have a method to call on an Optional<T> to get
the exact behavior as an if-else statement? Well, that is possible starting with Java 9; the
ifPresentOrElse(..) method that takes as arguments a Consumer<T> to process the contents of the
Optional<T> instance when is not empty and a Runnable instance to execute when Optional<T>
instance when is empty (Listing 8-19).

package com.apress.bgn.eigth;

import com.apress.bgn.eigth.util.MediaLoader;

import com.apress.bgn.eigth.util.Song;

import java.util.List;

import java.util.Optional;

public class OptionalDemo {

 public static void main(String... args) {

 List<Song> songs = MediaLoader.loadSongs();

 Optional<Song> opt2 = songs.stream()

 .filter(ss -> "B.B. King".equals(ss.getSinger()))

 .findFirst();

 opt2.ifPresentOrElse(

 r -> System.out.println(r.getTitle()),

 () -> System.out.println("Not found!")) ;

 }

}

Listing 8-19 Code Showing Usage of Optional.ifPresentOrElse(..)

If the Optional<T> instance is not empty, its contents can be extracted by calling the get() method
(Listing 8-20).

package com.apress.bgn.eigth;

import com.apress.bgn.eigth.util.MediaLoader;

import com.apress.bgn.eigth.util.Song;

import java.util.List;

import java.util.Optional;

public class OptionalDemo {

 public static void main(String... args) {

 List<Song> songs = MediaLoader.loadSongs();

 Optional<Song> opt3 = songs.stream()

 .filter(ss -> "Rob Thomas".equals(ss.getSinger()))

 .findFirst();

 System.out.println("Found Song " + opt3.get());

 }

}

Listing 8-20 Code Showing Usage of Optional.get()

The previous code does not print anything when the desired object is not found, because the
Optional<T> is empty. But if we want to print a default value for example, we can do that as well using a
method named orElse(..) (Listing 8-21).

package com.apress.bgn.eigth;

import com.apress.bgn.eigth.util.MediaLoader;

import com.apress.bgn.eigth.util.Song;

import java.util.List;

import java.util.Optional;

public class OptionalDemo {

 public static void main(String... args) {

 List<Song> songs = MediaLoader.loadSongs();

 Optional<Song> opt4 = songs.stream()

 .filter(ss -> "B.B. King".equals(ss.getSinger()))

 .findFirst();

 opt4.ifPresent(r -> System.out.println(r.getTitle()));

 Song defaultSong = new Song();

 defaultSong.setTitle("Untitled");

 Song s = opt4.orElse(defaultSong);

 System.out.println("Found: " + s.getTitle());

 }

}

Listing 8-21 Code Showing Usage of Optional.orElse(..)

The orElse(T t) method receives as an argument an instance of the type wrapped by Optional<T>.
There is another version of it that takes a Supplier<T> that returns an object of the required type. The
snippet using that method is shown here:

Song fromSupplier =

 opt4.orElseGet(() -> new Song("None", "Untitled", 0, null));

System.out.println("Found: " + fromSupplier.getTitle());

If we were interested to throw a speci�ic exception when the Optional<T> is empty , there is a method
for that as well, named orElseThrow(..) (Listing 8-22).

package com.apress.bgn.eigth;

import com.apress.bgn.eigth.util.MediaLoader;

import com.apress.bgn.eigth.util.Song;

import java.util.List;

import java.util.Optional;

public class OptionalDemo {

 public static void main(String... args) {

 List<Song> songs = MediaLoader.loadSongs();

 Optional<Song> opt5 = songs.stream()

 .filter(st -> "B.B. King".equals(st.getSinger()))

 .findFirst();

 Song song = opt5.orElseThrow(IllegalArgumentException::new);

 }

}

Listing 8-22 Code Showing Usage of Optional.orElseThrow(..)

As you probably noticed in the previous code samples, Optional<T> and Stream<T> can be
combined to write practical code to solve complex solutions. As there are a lot of methods that can be
applied to Optional<T> and Stream<T> instances as well, the next sections will introduce them for
streams and randomly make reference to Optional<T> as well .

How to Use Streams Like a Pro
After creating a stream, the next thing is to process the data on the stream. The result of that processing can
be another stream that can be further processed as many times as needed. There are quite a few methods to
use to process a stream and return the result as another stream. These methods are called intermediate
operations . The methods that do not return a stream but actual data structures, or nothing, are named
terminal operations . All these are de�ined in the Stream<T> interface. The key feature of streams is that
the processing of data using streams is only done when the terminal operation is initiated and elements
from source consumed only as needed. So you could say that the whole stream process is actually lazy. Lazy
loading of source elements and processing them when needed allows signi�icant optimizations.

After the previous af�irmations you probably realized that the forEach(..) method that was used a
lot previously to print values from the streams is actually a terminal operation. But there are quite a few
other terminal operations and a few of them, the ones you’ll most likely need for the most commons
implementations, will be used in the examples in the rest of the chapter.

This chapter started with an example that was processing a stream of Song instances, but the Song
class was not shown. You can see its �ields in Listing 8-23.

package com.apress.bgn.eigth;

public class Song {

 private Long id;

 private String singer;

 private String title;

 private Integer duration;

 private AudioType audioType;

 //getters and setters

 // toString

}

Listing 8-23 Fields of Class Song

The AudioType is an enum containing the types of audio �iles and is depicted in Listing 8-24.

package com.apress.bgn.eigth;

public enum AudioType {

 MP3,

 FLAC,

 OGG,

 AAC,

 M4A,

 WMA,

 MP4

}

Listing 8-24 AudioType Enum

Now that the data type that will be used on the following stream examples, the data should be depicted
as well. In the example in the book, the data is contained into a �ile named songs.csv. The CSV extension
denotes a comma separated �ile, and each Song instance matches a line in the �ile. Each line contains all
the property values of each Song instance, separated by columns. The order of the values must match the
order of the constructor arguments. Other separators can be used; semicolons are used here for practical
reasons (which is the default supported by the library reading the data). The contents of �ile are depicted in
Listing 8-25.

01;John Mayer;New Light;206;FLAC

02;John Mayer;My Stupid Mouth;225;M4A

03;John Mayer;Vultures;247;FLAC

04;John Mayer;Edge of Desire;333;MP3

05;John Mayer;In Repair;372;MP3

05;Rob Thomas;Paper Dolls;185;MP3

07;The Script;Mad Love;207;MP3

08;Seth MacFarlane;No One Ever Tells You;244;MP3

09;Nat King Cole;Orange Colored Sky;154;MP3

10;Vertical Horizon;Forever;246;MP3

11;Mario Lanza;Temptation;141;M4A

12;Jack Radics;No Matter;235;MP3

13;George Michael;Fastlove;306;MP3

14;Childish Gambino;Freaks And Geeks;227;M4A

15;Bill Evans;Lover Man;304;MP3

16;Darren Hayes;Like It Or Not;381;MP3

17;Stevie Wonder;Superstition;284;MP3

18;Tony Bennett;It Had To Be You;196;MP3

19;Tarja Turunen;An Empty Dream;322;MP3

20;Lykke Li;Little bit;231;M4A

21;Ben Barnes;You find me;420;FLAC

Listing 8-25 Song Entries in the sonds.csv File

Each line in the �ile will be transformed into a Song instance by using classes in a library named JSefa.3

This library is not the topic of this book, but if you are interested, you can use the link in the footnote to get
more details from the of�icial site.

Terminal Functions: forEach and forEachOrdered
Now you are ready to start playing with streams. Assuming the songs stream will provide all Song instances
declared in the previous listing, let’s �irst print all the elements in the stream. The code in Listing 8-26 prints
all Song instances on a Stream<Song> using a simple consumer.

package com.apress.bgn.eigth;

import com.apress.bgn.eigth.util.Song;

import com.apress.bgn.eigth.util.StreamMediaLoader;

import java.util.stream.Stream;

public class MediaStreamTester {

 public static void main(String... args) {

 Stream<Song> songs = StreamMediaLoader.loadSongs();

 songs.forEach(song -> System.out.println(song));

 }

}

Listing 8-26 Using a Stream to Print Song Instances

Method references introduced were introduced in Java 8. Method references are a shortcut for cases
when a lambda expression does nothing else than call a method, so the method can be referred by name
directly. So this line:

songs.forEach(song -> System.out.println(song));

Becomes:

songs.forEach(System.out::println);

The forEach(..) method receives an instance of Consumer<T> as an argument. In the two previous
examples the implementation of the accept() method contained only a call to
System.out.println(song), and that is why the code is so compact, because method references can
be used. But if the implementation of this method needs to contain more statements, then the compact code
previously written would not be possible.

Instead of printing the songs directly, let’s �irst uppercase the singer’s name, as depicted in Listing 8-27.

package com.apress.bgn.eigth;

import com.apress.bgn.eigth.util.Song;

import com.apress.bgn.eigth.util.StreamMediaLoader;

import java.util.function.Consumer;

import java.util.stream.Stream;

public class MediaStreamTester {

 public static void main(String... args) {

 Stream<Song> songs = StreamMediaLoader.loadSongs();

 songs.forEach(new Consumer<Song>() {

 @Override

 public void accept(Song song) {

 song.setSinger(song.getSinger().toUpperCase());

 System.out.println(song);

 }

 });

 }

}

Listing 8-27 Using a Consumer Anonymous Class to Print Song Instances

It can be simpli�ied using lambda expressions, but since the method body has two lines, it still looks bad.
So a different way to do it is to declare a consumer �ield, and use lambda to call its accept(..) method for
every song, as depicted in Listing 8-28.

package com.apress.bgn.eigth;

import com.apress.bgn.eigth.util.Song;

import com.apress.bgn.eigth.util.StreamMediaLoader;

import java.util.function.Consumer;

import java.util.stream.Stream;

public class MediaStreamTester {

 public static Consumer<Song> myConsumer = song -> {

 song.setSinger(song.getSinger().toUpperCase());

 System.out.println(song);

 };

 public static void main(String... args) {

 Stream<Song> songs = StreamMediaLoader.loadSongs();

 songs.forEach(song -> myConsumer.accept(song));

 }

}

Listing 8-28 Using a Consumer Field to Print Song Instances

The sister function forEachOrdered(..) does the same thing as forEach(..) , with one little
difference to ensure that the elements on the stream will be processed in encounter order, if such order is
de�ined for the stream, even if the stream is a parallel one. So basically, the following two lines will print the
songs in the same order:

songs.forEachOrdered (System.out::println);

songs.parallel().forEachOrdered(System.out::println);

Intermediate Operation: filter and Terminal Operation: toArray
In the following example , we will select all MP3 songs and will save them to an array. Selecting all MP3
songs is done using the filter(..) method. This method receives an argument of type Predicate<T>,
which is used to de�ine a condition that the elements of the stream must pass to be put into the array that
results by calling the terminal method named toArray(..).

The toArray(..) receives an argument of type IntFunction<A[]>. This type of function is also
called a generator and takes an integer as argument and generates an array of that size. In most cases the
most suitable generator is an array constructor reference.

The code to �ilter the MP3 entries and put them into an array of type Song[] is depicted in Listing 8-29:

package com.apress.bgn.eigth;

import com.apress.bgn.eigth.util.Song;

import com.apress.bgn.eigth.util.StreamMediaLoader;

import java.util.function.Consumer;

import java.util.stream.Stream;

public class MediaStreamTester {

 public static void main(String... args) {

 Stream<Song> songs = StreamMediaLoader.loadSongs();

 Song[] sarray = songs.filter(s -> s.getAudioType() ==

AudioType.MP3).toArray(Song[]::new); // array constructor reference

 Arrays.stream(sarray).forEach(System.out::println);

 }

}

Listing 8-29 Using a Generator Function to Collect Stream Elements Into an Array

Intermediate Operation: map, flatMap and Terminal Operation: collect
In the following example we will process all the songs and calculate the duration in minutes. To do this, we
will use the map(..) method to call a pure function for each song instance emitted by the stream that
returns the duration in minutes. This will result in a new stream of Integer values.

All its elements will be added to a List<Integer> using the collect(..) method. This method
accumulates the elements as they are processed into a Collection<Integer> instance . Listing 8-30
shows these methods being used.

package com.apress.bgn.eigth;

import com.apress.bgn.eigth.util.Song;

import com.apress.bgn.eigth.util.StreamMediaLoader;

import java.util.List;

import java.util.stream.Collectors;

import java.util.stream.Stream;

public class SongTransformer {

 public static int processDuration(Song song) {

 int secs = song.getDuration();

 return secs/60;

 }

 public static void main(String... args) {

 Stream<Song> songs = StreamMediaLoader.loadSongs();

 List<Integer> durationAsMinutes = songs

 .map(SongTransformer::processDuration) // method reference

call

 .collect(Collectors.toList());

 durationAsMinutes.forEach(System.out::println);

 }

}

Listing 8-30 Using map(..) and collect(..) Methods

The map(..) method receives an argument of type Function<T,R>(T input type, R result type)
which is basically a reference to a function to apply on each element of the stream. The function we applied
in the previous example takes a song element from the stream, gets its duration, and transforms it into
minutes and returns it. The code in the previous listing can be rewritten as depicted in Listing 8-31 where
the method processDuration is declared as a �ield of type Function<T,R>.

package com.apress.bgn.eigth;

import com.apress.bgn.eigth.util.Song;

import com.apress.bgn.eigth.util.StreamMediaLoader;

import java.util.List;

import java.util.function.Function;

import java.util.stream.Collectors;

import java.util.stream.Stream;

public class SongTransformer {

 public static Function<Song, Integer> processDuration = song ->

song.getDuration()/60;

 public static void main(String... args) {

 Stream<Song> songs = StreamMediaLoader.loadSongs();

 List<Integer> durationAsMinutes = songs

 .map(processDuration)

 .collect(Collectors.toList());

 durationAsMinutes.forEach(System.out::println);

 }

}

Listing 8-31 Using a Field of Type Function<T,R> to Process Stream Elements

The �irst generic type of the Function<T,R> is the type of the processed element, and the second is
the type of the result.

A version of the filter(..) method mentioned in the previous section is de�ined for the
Optional<T> type as well and can be used to avoid writing complicated if statements, together with the
map(..) method. Let’s assume we have a Song instance and we want to check if it is more than three
minutes and less than 10 minutes long. Instead of writing an if statement with two conditions connected
by an AND operator, we can use an Optional<Song> and those two methods to do the same, as shown in
Listing 8-32.

package com.apress.bgn.eigth;

import com.apress.bgn.eigth.util.Song;

public class SongTransformer {

 public static void main(String... args) {

 Song song0 = new Song("Ben Barnes", "You find me", 420,

AudioType.FLAC);

 if(isMoreThan3MinsAndLessThenTen(song0)) {

 System.out.println("This song is just right!");

 }

 }

 public static boolean isMoreThan3MinsAndLessThenTen(Song song) {

 return

Optional.ofNullable(song).map(SongTransformer::processDuration)

 .filter(d -> d >= 3)

 .filter(d -> d <= 10)

 .isPresent();

 }

}

Listing 8-32 Using filter(..) and map(..) to Avoid Writing if Statements

 The previous implementation might not be ideal when it comes to performance, but code like that
can be written if you wish. Just make sure to read the documentation properly before abusing stream
operations.

So the map(..) is quite powerful, but it has a small �law. If we take a look at its signature in the
Stream.java �ile this is what we will see:

<R> Stream<R> map(Function<? super T, ? extends R> mapper);

So if the map(..) function argument applied to each element in the stream returns a stream with the
result, which is placed into another stream that contains all results, the collect(...) method is actually
called on a Stream<Stream<R>>. The same goes for Optional<T>; the terminal method will be called
on a <Optional<Optional<T>>. When the objects are simple, like the Song instances used in these
book code samples, the map(..) method works quite well, but if the objects in the original stream are more
complex, such as a List<List<T>>, things might get complicated. The easiest way to show the effects of
the flatMap(..) is to apply it on a List<List<T>>. Let’s take a look at the example in Listing 8-33.

package com.apress.bgn.eigth;

import java.util.Collection;

import java.util.List;

import java.util.stream.Collectors;

public class MoreStreamsDemo {

 public static void main(String... args) {

 List<List<Integer>> testList = List.of (List.of(2,3), List.of(4,5),

List.of(6,7));

 System.out.println(processList(testList));

 }

 public static List<Integer> processList(List<List<Integer>> list) {

 List<Integer> result = list

 .stream()

 .flatMap(Collection::stream)

 .collect(Collectors.toList());

 return result;

 }

}

Listing 8-33 Using flatMap(..) to Unwrap Stream Elements

The flatMap(..) method receives as argument a reference to a method that takes a collection and
transforms it into a stream, the simplest way to create a Stream<Stream<Integer>>. The
flatMap(..) does its magic and the result is transformed into Stream<Integer> and the elements are
then collected by the collect(..) method into a List<Integer>. The operation of removing the
useless stream wrapper is called �lattening. If it is still not obvious what is happening, Figure 8-2 should
make things clearer.

Figure 8-2 Visual depiction of the effects of flatMap(..)

In the previous code sample, using the map(..) method doesn’t yield the expected result. If the
flatMap(..) is replaced with map(..) the �inal result is not a List<Integer>, but a
List<Stream<Integer>>. IntelliJ is smart enough to �igure it out, and it provides the appropriate
message to help you choose the right method to call, as depicted in Figure 8-3.

Figure 8-3 IntelliJ IDEA error message when map(..) is used instead of flatMap(..)

Another way to see the effect of the flatMap(..) method is to write an even more simple example
with Optional<T>. Let’s say we need a function that transforms a String value into an Integer value.
If the String value is not a valid number, we want to avoid returning null. This means that our function
must take a String and return Optional<Integer>. The code shown in Listing 8-34 contains an
explicit �lattening and a �lattening done with flatMap(..).

package com.apress.bgn.eigth;

import java.util.Optional;

import java.util.function.Function;

public class MoreStreamsDemo {

 public static void main(String... args) {

 Optional<String> str = Optional.of("42");

 Optional<Optional<Integer>> resInt = str.map(toIntOpt);

 // explicit flattening

 Optional<String> str0 = Optional.of("42");

 Optional<Optional<Integer>> resInt0 = str0.map(toIntOpt);

 Optional<Integer> desiredRes0 = resInt0.orElse(Optional.empty());

 System.out.println("finally: " + desiredRes0.get());

 // flatMap(..) flattening

 Optional<String> str1 = Optional.of("42");

 Optional<Integer> desiredRes1 = str1.flatMap(toIntOpt);

 System.out.println("boom: " + desiredRes1.get());

 }

 // converts a String to int, returns Optional<Integer> with the result,

 //Optional.empty if it cannot be converted

 public static Function<String, Optional<Integer>> toIntOpt = str -> {

 try {

 return Optional.of(Integer.parseInt(str));

 } catch (NumberFormatException e) {

 return Optional.empty();

 }

 };

}

Listing 8-34 Flattening of a Optional<Optional<T>>

So yes, there is a slight difference between map(..) and flatMap(..) , and although in most cases
you will use the �irst, it is good to know that the latter exists too.

Intermediate Operation: sorted and Terminal Operation: findFirst
As the name says, the sorted() method has something to do with sorting, element ordering. When called
on a stream, it creates another stream with all the elements of the initial stream, but sorted in their natural
order. If the type of elements on the stream is not comparable (the type does not implement
java.lang.Comparable<T>), a java.lang.ClassCastException is thrown. And since we are
going to use this method to get a stream of sorted elements, we will use findFirst() to get the �irst
element in the stream. This method returns an Optional<T>, because the stream might be empty and thus
there is no �irst element. This means to get the value the get() method must be called. For the situation
where the stream might be empty, the orElse(..) or the orElseGet(..) method can be used to return
a default value in case of the missing �irst element. Listing 8-35 depicts both situations.

package com.apress.bgn.eigth;

import java.util.List;

public class MoreStreamsDemo {

 public static void main(String... args) {

 // non empty stream, result 'ever'

 List<String> pieces = List.of("some","of", "us", "we’re", "hardly",

"ever", "here");

 String first0 = pieces.stream().sorted().findFirst().get();

 System.out.println("First from sorted list: " + first0);

 // empty stream, result 'none'

 pieces = List.of();

 String first1 = pieces.stream().sorted().findFirst().orElse("none");

 System.out.println("First from sorted list: " + first1);

 }

}

Listing 8-35 Extracting the First Element in an Ordered Stream

Intermediate Operation: distinct() and Terminal Operation: count()
The distinct() method takes a stream and generates a stream with all the distinct elements of the
original stream. And since in the examples in this book we couple intermediary and terminal operations,
let’s use count() , which counts the elements of the stream. A small example is depicted in Listing 8-36.

package com.apress.bgn.eigth;

public class MoreStreamsDemo {

 public static void main(String... args) {

 List<String> pieces = List.of("as","long", "as", "there", "is",

"you", "there", "is", "me");

 long count = pieces.stream().distinct().count();

 System.out.println("Elements in the stream: " + count);

 }

}

Listing 8-36 Counting Elements of a Stream, After Removing Duplicate Elements

When run, the code prints Elements in the stream: 6, because after removing the duplicate terms of as,
there, is we are left with 6 terms. If the initial stream is empty, the count() method returns 0(zero).

Intermediate Operation: limit(..) and Terminal Operations: min(..), max(..)
The limit(..) method was used in this chapter before to transform an in�inite stream into a �inite one. As
it transforms a stream into another, clearly this is an intermediate function. The terminal methods covered
in this section model two mathematical functions:

to calculate the minimum of the elements in the stream: min(..)
to calculate the maximum of the elements in the stream: max(..).

The type of elements in the stream must implement java.util.Comparator<T>, otherwise a
minimum and maximum value cannot be calculated. Using the limit(..), min(..) and max(..)
functions together is depicted in Listing 8-37.

package com.apress.bgn.eigth;

import java.util.stream.Stream;

public class MoreStreamsDemo {

 public static void main(String... args) {

 Stream<Integer> ints0 = Stream.of(5,2,7,9,8,1,12,7,2);

 ints0.limit(4).min(Integer::compareTo)

 .ifPresent(min -> System.out.println("Min is: " + min));

 // Prints "Min is: 2"

 Stream<Integer> ints1 = Stream.of(5,2,7,9,8,1,12,7,2);

 ints1.limit(4).max(Integer::compareTo)

 .ifPresent(max -> System.out.println("Max is: " + max));

 // Prints "Max is: 9"

 }

}

Listing 8-37 Computing the Maximum and Minimum Value in a Stream

Terminal Operations: sum() and reduce(..)
Let’s consider the scenario: we have a �inite stream of Song values and we want to calculate the sum of their
durations. There are two stream terminator methods that can be used to do this: the sum(..) method and
the reduce(..) method . The code to do this is depicted in Listing 8-38.

package com.apress.bgn.eigth;

import com.apress.bgn.eigth.util.Song;

import com.apress.bgn.eigth.util.StreamMediaLoader;

import java.util.stream.Stream;

public class MediaStreamTester {

 public static void main(String... args) {

 Stream<Song> songs = StreamMediaLoader.loadSongs();

 Integer totalDuration0 = songs

 .mapToInt(Song::getDuration)

 .sum();

 System.out.println("Total duration using sum: " + totalDuration0);

 songs = StreamMediaLoader.loadSongs();

 Integer totalDuration1 = songs

 .mapToInt(Song::getDuration)

 .reduce(0, (a, b) -> a + b);

 System.out.println("Total duration using reduce: " +

totalDuration1);

 }

}

Listing 8-38 Adding the Elements of a Stream

The version of the reduce(..) operation takes two arguments:

the identity argument represents the initial result of the reduction and the default result if there are no
elements in the stream.
the accumulator function takes two parameters that the operation is applied on to get a partial result (in
this case is the addition of those two elements).

The reduce(..) operation accumulator is an instance of
java.util.function.BinaryOperator<T> that represents an operation upon two operands of the
same type, producing a result of the same type as the operands. On an IntStream, like the one returned by
the mapToInt(..) operation, the reduce(..) operation accumulator is an instance of

java.util.function.IntBinaryOperator, which is a custom function that takes two int arguments
and returns an int result.

Essentially, every time an element of the stream is processed the accumulator returns a new value, which
in this case is the result of adding the processed element with the previous partial result. So if the result of
the process is a collection, the accumulator’s result is a collection, so every time a stream element is
processed a new collection is created. This is pretty inef�icient, so in scenarios when collections are involved
the collect(..) operation is more suitable.

Intermediate Operation: peek(..)
This function is special as it really doesn’t affect the stream results in any way. The peek() function returns
a stream consisting of the elements of the stream it is called on, while also performing the operation
speci�ied by its Consumer<T> argument on each element. This means that this function can be used to
debug stream operations using logging statements at that print information at runtime.

Let’s take our stream of Song instances, �ilter them by their duration, select all of them with duration >
300 seconds, and then get their titles and collect them in a list. The code to do this is depicted in Listing 8-
39.

package com.apress.bgn.eigth;

import com.apress.bgn.eigth.util.Song;

import com.apress.bgn.eigth.util.StreamMediaLoader;

import java.util.stream.Stream;

public class MediaStreamTester {

 public static void main(String... args) {

 Stream<Song> songs = StreamMediaLoader.loadSongs();

 List<String> result = songs.filter(s -> s.getDuration() > 300)

 .map(Song::getTitle)

 .collect(Collectors.toList());

 }

}

Listing 8-39 Calling a Simple map(..) on Stream Elements

In the previous code, before the map(..) call, a peek(..) call can be introduced to check if the �iltered
elements are the ones you expect. Another peek(..) call can be introduced after to inspect the mapped
value, as shown in Listing 8-40.

package com.apress.bgn.eigth;

import com.apress.bgn.eigth.util.Song;

import com.apress.bgn.eigth.util.StreamMediaLoader;

import java.util.stream.Stream;

public class MediaStreamTester {

 public static void main(String... args) {

 Stream<Song> songs = StreamMediaLoader.loadSongs();

 List<String> result = songs.filter(s -> s.getDuration() > 300)

 .peek(e -> System.out.println("\t Filtered value: " + e))

 .map(Song::getTitle)

 .peek(e -> System.out.println("\t Mapped value: " + e))

 .collect(Collectors.toList());

 }

}

Listing 8-40 Showing What peek(..) Can Do

Intermediate Operation: skip(..) and Terminal Operations: findAny(),
anyMatch(..), allMatch(..) and noneMatch(..)
These are the last operations that will be discussed in this chapter, so they were coupled all together
because the skip(..) operation might affect the result of the others when applied together.

The findAny() returns an Optimal<T> instance that contains the some element of the stream or an
empty Optimal<T> instance when the stream is empty.

 The behavior of findAny() this operation is explicitly nondeterministic; it is free to select any
element in the stream. Its behavior is the same as findFirst() when applied to an unordered stream.
So the choice to use one or the other depends on the type of stream is being called on.

Since findAny() is nondeterministic, its result is unpredictable, so applying it to a parallel stream is
the same as applying it to a sequential one. The findAny() operation is applied to parallel Song stream, as
shown in Listing 8-41.

package com.apress.bgn.eigth;

import com.apress.bgn.eigth.util.Song;

import com.apress.bgn.eigth.util.StreamMediaLoader;

import java.util.stream.Stream;

public class MediaStreamTester {

 public static void main(String... args) {

 Stream<Song> songs = StreamMediaLoader.loadSongs();

 Optional<Song> optSong = songs.parallel().findAny();

 optSong.ifPresent(System.out::println);

 }

}

Listing 8-41 Example Using findAny() on Parallel Stream

The anyMatch(..) method receives an argument of type Predicate<T> and returns a boolean
true value if there are any elements in the stream that match the predicate, and false otherwise. It works
on parallel streams as well. The code in Listing 8-42 returns true if any of the songs in our stream has a
title containing the word Paper.

package com.apress.bgn.eigth;

import com.apress.bgn.eigth.util.Song;

import com.apress.bgn.eigth.util.StreamMediaLoader;

import java.util.stream.Stream;

public class MediaStreamTester {

 public static void main(String... args) {

 Stream<Song> songs = StreamMediaLoader.loadSongs();

 boolean b0 = songs.anyMatch(s -> s.getTitle().contains("Paper"));

 System.out.println("Are there songs with title containing ’Paper’? "

+ b0);

 }

}

Listing 8-42 Example Using anyMatch(..)

The previous code will print true as there is a song in that stream named Paper Dolls. But if we
want to change that result, all we have to do is skip the �irst 6 elements from processing in the original
stream by calling skip(6) as depicted in Listing 8-43. This method works on parallel streams as well.

package com.apress.bgn.eigth;

import com.apress.bgn.eigth.util.Song;

import com.apress.bgn.eigth.util.StreamMediaLoader;

import java.util.stream.Stream;

public class MediaStreamTester {

 public static void main(String... args) {

 Stream<Song> songs = StreamMediaLoader.loadSongs();

 boolean b1 = songs.parallel()

 .skip(6)

 .anyMatch(s -> s.getTitle().contains("Paper"));

 System.out.println("Are there songs with title containing `Paper`? "

+ b1);

 }

}

Listing 8-43 Example Using skip(..) and anyMatch(..)

If the �irst six elements in the original stream are not processed, the previous code returns false. There
is another function that analyzes all elements of a stream checking if they all match a single predicate, and
that method is named allMatch(..) . In Listing 8-44 we check to see if all Song instances have duration
bigger than 300. The function returns a boolean value, and the value is true if all Song instances match the
predicate and false otherwise. For the dataset used in the examples for this chapter the expected result is
a false value, because not all our Song instances have the duration �ield value bigger than 300.

package com.apress.bgn.eigth;

import com.apress.bgn.eigth.util.Song;

import com.apress.bgn.eigth.util.StreamMediaLoader;

import java.util.stream.Stream;

public class MediaStreamTester {

 public static void main(String... args) {

 Stream<Song> songs = StreamMediaLoader.loadSongs();

 boolean b2 = songs.allMatch(s -> s.getDuration() > 300);

 System.out.println("Are all songs longer than 5 minutes? " + b2);

 }

}

Listing 8-44 Showing What allMatch(..) Can Do

The sister of this function is a function named noneMatch(..) that does exactly the opposite thing:
takes a predicate as an argument and returns a boolean value as well, but the value is true if none of the
stream elements match the predicate provided as argument, and false otherwise. In Listing 8-45 we check
using the noneMatch(..) if there is no Song instance with duration > 300 and we expect the result to be
false as well.

package com.apress.bgn.eigth;

import com.apress.bgn.eigth.util.Song;

import com.apress.bgn.eigth.util.StreamMediaLoader;

import java.util.stream.Stream;

public class MediaStreamTester {

 public static void main(String... args) {

 Stream<Song> songs = StreamMediaLoader.loadSongs();

 boolean b3 = songs.noneMatch(s -> s.getDuration() > 300);

 System.out.println("Are all songs shorter than 5 minutes? " + b3);

 }

}

Listing 8-45 Showing What noneMatch(..) Can Do

Debugging Stream Code
As mentioned previously the peek(..) method can be used for a light debugging, more like logging the
changes that happen on stream elements between one stream method call and another. Another simple way
to debug code written with streams is to implement predicates, consumers, and suppliers and add logging
statements in their main methods.

These simple methods are not always enough, especially when that code is part of a big application that a
big number of users access simultaneously. They might also be tedious to implement, because logging
statements must be added during development and then removed before putting the application in
production to avoid polluting the application logs and (maybe) slowing it down.

A more advanced way to debug streams is provided by the IntelliJ IDEA editor; starting with May 11,
2017 this editor includes a specialized plug-in for stream debugging named Java Stream Debugger.4

 If you are reading this book and are not using IntelliJ IDEA as an editor to test the code, you can skip

this section and research a Steam debugger plug-in for the editor of your choice. This book is focused of
the Java language mostly, and this section is just added here for convenience.

To use the Java Stream Debugger, you must place a breakpoint on the line where a stream processing
chain is de�ined. In Figure 8-4 you can see a piece of code representing the processing of a stream of Song
instances being executed in debug and a breakpoint paused the execution in line 44. When the execution is
paused, the Stream debugger view can be opened, by clicking on the button that is surrounded in the red
rectangle.

Figure 8-4 Button to start the Java stream debugger

If you click the debugger button in the previous image a popup window will appear that will have a tab
for each operation of the stream processing. In Figure 8-5 you can see the tabs and their methods
underlined and linked to each other.

Figure 8-5 The Java stream debugger window

In the operation tabs, the text box on the left contains the elements on the original stream. The text box
on the right contains the resulting stream with its elements. The following images in the chapter show tabs
for various operations. For operations that reduce the number of elements or change their order there are
lines from one set of elements to the other. The �irst map(..) method transforms the song titles to their
uppercase version. The second map(..) method transforms the duration of the songs in minutes and
returns a stream of integers.

The distinct(..) method produces a new stream that contains only the distinct elements in the
previous one, and this operation’s effect is depicted quite nice in the debugger and in Figure 8-6.

Figure 8-6 The distinct() operation in the IntelliJ IDEA stream debugger

The next operation is sorted(), which will sort the entries on the stream returned by the
distinct() operation. The reordering of the elements and adding them to a new stream is depicted in the
debugger also and in Figure 8-7.

Figure 8-7 The sorted() operation in the IntelliJ IDEA stream debugger

After inspecting the results in the debugger, even if you want to continue the execution, this won’t be
possible because all elements in the original stream and the resulting ones were actually consumed by the
debugger, so the following exception will be printed in the console:

OpenJDK 64-Bit Server VM warning: Sharing is only supported for boot loader cl

because bootstrap classpath has been appended

Exception in thread "main" java.lang.IllegalStateException: stream has already

operated upon or closed

 at java.base/java.util.stream.AbstractPipeline.<init>(AbstractPipeline.jav

 at java.base/java.util.stream.ReferencePipeline.<init>

(ReferencePipeline.java:96)

 at java.base/java.util.stream.ReferencePipeline$StatelessOp.<init>

(ReferencePipeline.java:800)

 at java.base/java.util.stream.ReferencePipeline$3.<init>

(ReferencePipeline.java:191)

 at java.base/java.util.stream.ReferencePipeline.map(ReferencePipeline.java

 at

chapter.eigth/com.apress.bgn.eigth.StreamDebugerDemo.main(StreamDebugerDemo.ja

Summary
After reading this chapter and running the provided code samples it should be obvious why the Stream API
is so awesome. Personally, I like three things best:

more compact and simple code can be written to solve problems without losing readability (ifs and loops
can be avoided)
parallel processing of data is possible without the boilerplate code required before Java 8, as long as the
performance angle is taken into consideration
code can be written in functional programming style

Also, the Stream API is more a declarative way of programming, as most stream methods take arguments
of type Consumer<T>, Predicate<T>, Supplier<T>, Function<T>, and so on that declare what
should be done for each stream element, but the methods are not explicitly called unless there are elements
on the stream.

 Writing code using the Java Stream API is like designing a Rube Goldberg machine. Nothing happens

until an event starts the whole contraption. A Rube Goldberg machine is intentionally designed to
perform a simple task in an indirect and overly complicated way. Depending on the problem you are
trying to solve, code written using streams can get quote complex too. In the end it is your decision as a
developer how much you need to rely on streams.

This chapter also covered how to use Optional<T> instances to avoid NullPointerExceptions
and writing if statements.

After you have �inished reading this chapter you should have a pretty good idea about the following:

how to create sequential and parallel streams from collections
what empty streams are useful for
terms to remember about streams:

– sequence of elements
– predicate
– consumer
– supplier
– method reference
– source
– aggregate operations
– intermediate operation
– terminal operation
– pipelining
– internal automatic iterations

1

2

3

4

how to create and use Optional<T> instances

Footnotes
A very good article about the functional programming paradigm is this one, and I gladly recommend you to read it: see Medium, “Mastering

the JavaScript Interview: What Is Functional Programming?,” https://medium.com/javascript-scene/master-the-javascript-
interview-what-is-functional-programming-7f218c68b3a0, accessed October 15, 2021.

Read more about Schrödinger at Wikipedia, “Schrödinger’s Cat,” https://en.wikipedia.org/wiki/Schr%C3%B6dinger%27s_cat,

accessed October 15, 2021.

JSefa (Java Simple exchange format api) is a simple library for stream-based serialization of Java objects to XML, CSV, and FLR. See more about

it at Jsefa, “Java Simple Exchange Format API (Parent),” http://jsefa.sourceforge.net/, accessed October 15, 2021.

The of�icial plug-in page from JetBrains, the company that created and maintains IntelliJ IDEA, can be found at JetBrains, “Java Stream

Debugger,” https://plugins.jetbrains.com/plugin/9696-java-stream-debugger?platform=hootsuite, accessed October
15, 2021.

https://medium.com/javascript-scene/master-the-javascript-interview-what-is-functional-programming-7f218c68b3a0
https://en.wikipedia.org/wiki/Schr%25C3%25B6dinger%2527s_cat
http://jsefa.sourceforge.net/
https://plugins.jetbrains.com/plugin/9696-java-stream-debugger%253Fplatform%253Dhootsuite

(1)

© Iuliana Cosmina 2022
I. Cosmina, Java 17 for Absolute Beginners
https://doi.org/10.1007/978-1-4842-7080-6_9

9. Debugging, Testing, and Documenting

Iuliana Cosmina1

Edinburgh, UK

Development work does not only require you to design the solution for a problem and write the code for it.
To make sure your solution solves the problem, you have to test it. Testing involves making sure every
component making up your solution behaves as expected in expected and unexpected situations.

The most practical way to test code is to inspect values of intermediary variables by logging them and
printing them in the console in speci�ic situations.

When a solution is complex, debugging provides the opportunity to pause the execution and inspect the
state of the variables. Debugging sometimes involves break points and requires an IDE. Break points, as the
name says, are points where the application pauses its execution and inspection of variables is performed.

After making sure your solution �its the requirements, you have to document it, especially if the problem
that is being solved is one that requires complex code to solve it. Or if your solution might be a prerequisite
for other applications, it is your responsibility to explain other developers how to use it.

This chapter will cover a few ways to do all these, because these are key talents for a developer.

Debugging
Debugging is a process of �inding and resolving defects or problems within a computer program. There are
more debugging tactics, and depending on the complexity of an application, one or more can be used. A list
of those techniques is noted here:

logging intermediary states of objects involved in the process and analyzing log �iles
interactive debugging using breakpoints to pause the execution of the program and inspect intermediary
states of objects involved in the process
testing
monitoring at the application or system level
analysis of memory dumps item pro�iling, a form of dynamic program analysis that measures the memory
occupied by a program, or CPU used, duration of method calls, and so on.

Let’s start with the simplest way of debugging: logging.

Logging
In the real-world logging is a destructive process, is the cutting and processing of trees to produce timber. In
software programming logging means writing log �iles that can be later used to identify problems in code.
The simplest way to log information is to use the System.out.print*(..) method family, as depicted in
Figure 9-1.

https://doi.org/10.1007/978-1-4842-7080-6_9

Figure 9-1 System.out.print method family

The examples in this chapter use a hierarchy of classes that provide methods to sort integer arrays. The
class hierarchy is depicted in Figure 9-2.

Figure 9-2 Sorting class hierarchy

In the next code sample the MergeSort class contents are modi�ied to add System.out.print(..)
statements to log the steps of the algorithm.

Merge-Sort is the name of a sorting algorithm with a better performance than Bubble-Sort (introduced
in the previous chapter). Merge-Sort describes sorting an array as the following suite of steps:

The array is split in two halves, each half is split again until the resulting array is one that can be sorted
easily, and the sorted arrays are than merged repeatedly, until the result is a single sorted array.

This approach of splitting the array repeatedly until sorting becomes a manageable operation is called
divide et impera , also known as divide and conquer . There are more algorithms that follow the same
approach for solving a problem and Merge-Sort is only the �irst of them that will be covered in this book. In
Figure 9-3, you can see what happens in every step of a Merge-Sort algorithm.

Figure 9-3 Merge sort algorithm steps

In each step of the algorithm the middle index of the array is identi�ied. Then the sort(..) method is
called for the arrays split in the middle by that index. This continues until there is no middle index, because
the array has a single element. That is when the merge(..) method is called; aside from merging pieces of
the array, it also sorts them during the merging.

Figure 9-3 depicts the algorithm in a pretty similar way to the output that will be generated by the
System.out.print(..) statements. Since it was mentioned that this algorithm is based on the Divide
and Conquer method, Figure 9-4 better shows the order of the operations.

Figure 9-4 Merge sort algorithm steps shown as a tree

To write the code that models the Merge-Sort algorithm, we need to write the two methods
sort(array, low, high) and merge(array, low, high, middle). The proposed
implementation is depicted in Listing 9-1.

package com.apress.bgn.nine.algs;

import java.util.logging.Logger;

public class MergeSort implements IntSorter {

 private static final Logger log =

Logger.getLogger(MergeSort.class.getName());

 public void sort(int[] arr, int low, int high) {

 if (low < high) {

 int middle = (low + high) / 2;

 //sort lower half of the interval

 sort(arr, low, middle);

 //sort upper half of the interval

 sort(arr, middle + 1, high);

 // merge the two intervals

 merge(arr, low, high, middle);

 }

 }

 private void merge(int arr[], int low, int high, int middle) {

 int leftLength = middle - low + 1;

 int rightLength = high - middle;

 int left[] = new int[leftLength];

 int right[] = new int[rightLength];

 for (int i = 0; i < leftLength; ++i) {

 left[i] = arr[low + i];

 }

 for (int i = 0; i < rightLength; ++i) {

 right[i] = arr[middle + 1 + i];

 }

 int i = 0, j = 0;

 int k = low;

 while (i < leftLength && j < rightLength) {

 if (left[i] <= right[j]) {

 arr[k] = left[i];

 i++;

 } else {

 arr[k] = right[j];

 j++;

 }

 k++;

 }

 while (i < leftLength) {

 arr[k] = left[i];

 i++;

 k++;

 }

 while (j < rightLength) {

 arr[k] = right[j];

 j++;

 k++;

 }

 }

}

Listing 9-1 Merge-Sort Proposed Implementation

Logging with System.out.print
The preceding code might look scary, but it does exactly what is depicted in Figure 9-3. A lot of variables are
needed though to refer all the indexes used to arrange our elements in the proper order. To make sure our
solution is properly implemented, it would be useful to see the values each method is called with and the
array pieces that are being handled. We can do this by simply modifying our methods and adding a few
System.out.print statements, as shown in Listing 9-2.

package com.apress.bgn.nine.algs;

public class MergeSort implements IntSorter {

 public void sort(int[] arr, int low, int high) {

 System.out.print("Call sort of [low,high]: [" + low + " " + high +

"] ");

 for (int i = low; i <= high; ++i) {

 System.out.print(arr[i] + " ");

 }

 System.out.println();

 if (low < high) {

 int middle = (low + high) / 2;

 //sort lower half of the interval

 sort(arr, low, middle);

 //sort upper half of the interval

 sort(arr, middle + 1, high);

 // merge the two intervals

 merge(arr, low, high, middle);

 }

 }

 private void merge(int arr[], int low, int high, int middle) {

 int leftLength = middle - low + 1;

 int rightLength = high - middle;

 int left[] = new int[leftLength];

 int right[] = new int[rightLength];

 for (int i = 0; i < leftLength; ++i) {

 left[i] = arr[low + i];

 }

 for (int i = 0; i < rightLength; ++i) {

 right[i] = arr[middle + 1 + i];

 }

 int i = 0, j = 0;

 int k = low;

 while (i < leftLength && j < rightLength) {

 if (left[i] <= right[j]) {

 arr[k] = left[i];

 i++;

 } else {

 arr[k] = right[j];

 j++;

 }

 k++;

 }

 while (i < leftLength) {

 arr[k] = left[i];

 i++;

 k++;

 }

 while (j < rightLength) {

 arr[k] = right[j];

 j++;

 k++;

 }

 System.out.print("Called merge of [low, high, middle]: [" + low + "

" + high + " " + middle + "]) ");

 for (int z = low; z <= high; ++z) {

 System.out.print(arr[z] + " ");

 }

 System.out.println();

 }

}

Listing 9-2 Merge-Sort Proposed Implementation with Logging Using System.out.print Statements

A combination of System.out.print(..) and System.out.println(..) statements format the
output to show the progress of the algorithm. To test the output, we need a class containing a main(..)
method to execute the algorithm, something similar to the one depicted in Listing 9-3.

package com.apress.bgn.nine;

import com.apress.bgn.nine.algs.IntSorter;

import com.apress.bgn.nine.algs.MergeSort;

import java.util.Arrays;

public class SortingDemo {

 public static void main(String... args) {

 int arr[] = {5,1,4,2,3};

 IntSorter mergeSort = new MergeSort();

 mergeSort.sort(arr, 0, arr.length - 1);

 System.out.print("Sorted: ");

 Arrays.stream(arr).forEach(i -> System.out.print(i+ " "));

 }

}

Listing 9-3 Main Class to Execute the Merge-Sort Proposed Implementation

If we run the preceding class, the arguments provided to methods sort(..) and merge(..) are
printed in the console. So are the values being sorted and array pieces being merged. The output should look
like the one depicted in Listing 9-4.

Call sort of [low,high]: [0 4] 5 1 4 2 3

Call sort of [low,high]: [0 2] 5 1 4

Call sort of [low,high]: [0 1] 5 1

Call sort of [low,high]: [0 0] 5

Call sort of [low,high]: [1 1] 1

Called merge of [low, high, middle]: [0 1 0]) 1 5

Call sort of [low,high]: [2 2] 4

Called merge of [low, high, middle]: [0 2 1]) 1 4 5

Call sort of [low,high]: [3 4] 2 3

Call sort of [low,high]: [3 3] 2

Call sort of [low,high]: [4 4] 3

Called merge of [low, high, middle]: [3 4 3]) 2 3

Called merge of [low, high, middle]: [0 4 2]) 1 2 3 4 5

Sorted: 1 2 3 4 5

Listing 9-4 Values Being Printed During the Execution of the Merge-Sort Proposed Implementation

You can see that the console output matches the algorithm steps depicted in Figure 9-3, so that output is
clearly proof that the solution works as expected.

Although all seems well, there is a problem with this code: every time the sort(..) method is called,
those printing statements are executed.

 If the sorting is just a step of a more complex solution, the output is not really necessary and can even
pollute the output of the bigger solution. Also, if the array is quite big, printing that output could affect the
performance of the overall solution.

So a different approach should be considered, one that could be customized and a decision made if the
output should be printed or not. This where logging libraries come in.

Logging with JUL
JUL is the name of the logging backend provided by the JDK and is an acronym for java.util.logging.
The JDK provides its own logger classes that are grouped under this package. A Logger instance is used to
write messages. The Logger instance should be provided a name when is created and log messages are
printed by calling specialized methods that print messages at different levels. For the JUL module, the levels
and their scope are listed here, but other logging libraries have similar logging levels.

OFF should be used to turn off all logging
SEVERE highest level, message indicates a serious failure
WARNING indicates that this message is being printed because of a potential problem
INFO indicates that this is an informational message
CONFIG indicates that this is a message containing con�iguration information
FINE indicates that this a message providing tracing information
FINER indicates that this is a fairly detailed tracing message
FINEST indicates that this is a very detailed tracing message
ALL all log messages should be printed

Loggers can be con�igured using XML or properties �iles and their output can be directed to external
�iles. For the code sample introduced previously all System.out.print statements in the MergeSort
class are replaced with logger calls. Listing 9-5 depicts the main class to run the algorithm.

package com.apress.bgn.nine;

// some imports omitted

import java.util.logging.Level;

import java.util.logging.LogManager;

import java.util.logging.Logger;

public class SortingJulDemo {

 private static final Logger log =

Logger.getLogger(SortingJulDemo.class.getName());

 static {

 try {

 LogManager logManager = LogManager.getLogManager();

 logManager.readConfiguration(new

FileInputStream("./chapter09/logging-

jul/src/main/resources/logging.properties"));

 } catch (IOException exception) {

 log.log(Level.SEVERE, "Error in loading configuration",

exception);

 }

 }

 public static void main(String... args) {

 int arr[] = {5,1,4,2,3};

 final StringBuilder sb = new StringBuilder("Sorting an array with

merge sort: ");

 Arrays.stream(arr).forEach(i -> sb.append(i).append(" "));

 log.info(sb.toString());

 IntSorter mergeSort = new MergeSort();

 mergeSort.sort(arr, 0, arr.length - 1);

 final StringBuilder sb2 = new StringBuilder("Sorted: ");

 Arrays.stream(arr).forEach(i -> sb2.append(i).append(" "));

 log.info(sb2.toString());

 }

}

Listing 9-5 Main Class to Run the Merge-Sort Proposed Implementation with JUL Logging Statements

There are not many log statements in this class.
The body of the class starts with the declaration and initialization of the Logger instance. The instance

is not created by calling the constructor, but obtained by calling the getLogger(..) static method
declared in the Logger class. This method looks for a logger instance with the name provided as argument,
if found that instance is returned otherwise an instance with that name is created and returned. In this
example the name of the logger instance is the fully quali�ied class name, obtain by calling
SortingJulDemo.class.getName().

Right after this statement, there is a static block used to con�igure the logger from the
logging.properties �ile . The contents of this �ile are shown in Listing 9-6.

handlers=java.util.logging.ConsoleHandler

java.util.logging.ConsoleHandler.level=ALL

java.util.logging.ConsoleHandler.formatter=java.util.logging.SimpleFormatter

java.util.logging.SimpleFormatter.format=[%1$tF %1$tT] [%4$-4s] %5$s %n

Listing 9-6 Properties Used to Con�igure the JUL Logger Declared in the logging.properties File

This �ield contains a list of values in the format propertyName=propertyValue that represent the
con�iguration for the JUL logger. Their values specify the following:

the class used to print the log messages: java.util.logging.ConsoleHandler prints messages in
the console.
the class used to format the log messages: java.util.logging.SimpleFormatter
a template for printing log messages: [%1$tF %1$tT] [%4$-4s] %5$s %n
the levels of the log messages that are printed, in this case all levels log messages because of the the ALL
value.

The Logger instance is created by calling the static method Logger.getLogger(..). The
recommended practice is for the logger to be named as the class it is logging messages for. Without any
additional con�iguration, every message printed with log.info(..) is printed pre�ixed with the full
system date, full class name, and method name in front of it. As you can imagine the result is quite verbose,
and this is the logging.properties �ile comes in handy and the LogManager con�igured from it. The
LogManager reads the con�iguration that customizes the Logger instance.

For this section all System.out.print statements are replaced with logger calls in the MergeSort
class. A StringBuilder is introduced to construct longer messages before writing them with
log.info([message]), which is equivalent to calling log.log(Level.INFO, [message]). The
resulting code of the algorithm is shown in Listing 9-7.

package com.apress.bgn.nine.algs;

import java.util.logging.Logger;

public class MergeSort implements IntSorter {

 private static final Logger log =

Logger.getLogger(MergeSort.class.getName());

 public void sort(int[] arr, int low, int high) {

 StringBuilder sb = new StringBuilder("Call sort of ")

 .append("[low,high]: [")

 .append(low).append(" ").append(high)

 .append("] ");

 for (int i = low; i <= high; ++i) {

 sb.append(arr[i]).append(" ");

 }

 log.info(sb.toString());

 if (low < high) {

 int middle = (low + high) / 2;

 //sort lower half of the interval

 sort(arr, low, middle);

 //sort upper half of the interval

 sort(arr, middle + 1, high);

 // merge the two intervals

 merge(arr, low, high, middle);

 }

 }

 private void merge(int arr[], int low, int high, int middle) {

 int leftLength = middle - low + 1;

 int rightLength = high - middle;

 int left[] = new int[leftLength];

 int right[] = new int[rightLength];

 for (int i = 0; i < leftLength; ++i) {

 left[i] = arr[low + i];

 }

 for (int i = 0; i < rightLength; ++i) {

 right[i] = arr[middle + 1 + i];

 }

 int i = 0, j = 0;

 int k = low;

 while (i < leftLength && j < rightLength) {

 if (left[i] <= right[j]) {

 arr[k] = left[i];

 i++;

 } else {

 arr[k] = right[j];

 j++;

 }

 k++;

 }

 while (i < leftLength) {

 arr[k] = left[i];

 i++;

 k++;

 }

 while (j < rightLength) {

 arr[k] = right[j];

 j++;

 k++;

 }

 StringBuilder sb = new StringBuilder("Called merge of [low, high,

middle]: [")

 .append(low).append(" ").append(high).append("

").append(middle)

 .append("]) ");

 for (int z = low; z <= high; ++z) {

 sb.append(arr[z]).append(" ");

 }

 log.info(sb.toString());

 }

}

Listing 9-7 Merge-Sort Proposed Implementation with Logging Using JUL Statements

Running the SortingJulDemo produces the output shown in Listing 9-8.

[2021-06-06 11:36:06] [INFO] Sorting an array with merge sort: 5 1 4 2 3

[2021-06-06 11:36:06] [INFO] Call sort of [low,high]: [0 4] 5 1 4 2 3

[2021-06-06 11:36:06] [INFO] Call sort of [low,high]: [0 2] 5 1 4

[2021-06-06 11:36:06] [INFO] Call sort of [low,high]: [0 1] 5 1

[2021-06-06 11:36:06] [INFO] Call sort of [low,high]: [0 0] 5

[2021-06-06 11:36:06] [INFO] Call sort of [low,high]: [1 1] 1

[2021-06-06 11:36:06] [INFO] Called merge of [low, high, middle]: [0 1 0]) 1

5

[2021-06-06 11:36:06] [INFO] Call sort of [low,high]: [2 2] 4

[2021-06-06 11:36:06] [INFO] Called merge of [low, high, middle]: [0 2 1]) 1

4 5

[2021-06-06 11:36:06] [INFO] Call sort of [low,high]: [3 4] 2 3

[2021-06-06 11:36:06] [INFO] Call sort of [low,high]: [3 3] 2

[2021-06-06 11:36:06] [INFO] Call sort of [low,high]: [4 4] 3

[2021-06-06 11:36:06] [INFO] Called merge of [low, high, middle]: [3 4 3]) 2

3

[2021-06-06 11:36:06] [INFO] Called merge of [low, high, middle]: [0 4 2]) 1

2 3 4 5

[2021-06-06 11:36:06] [INFO] Sorted: 1 2 3 4 5

Listing 9-8 Values Being Printed During the Execution of the Merge-Sort Proposed Implementation When Logging is Done Using JUL with a
Custom Con�iguration

Without the static initialization block that customizes how log messages are shown, the default class
used to specify where the log messages are printed is java.util.logging.ConsoleHandler, and the
java.util.logging.SimpleFormatter is con�igured with a default format that is quite verbose that
is declared by the jdk.internal.logger.SimpleConsoleLogger.
Formatting.DEFAULT_FORMAT.

The value of this constant is %1$tb %1$td, %1$tY %1$tl:%1$tM:%1$tS %1$Tp %2$s%n%4$s:
%5$s%6$s%n, and this makes the logger to pre�ix the log messages with a line containing the system date
and time formatted in a readable manner, the full class name, the method name, and a new line containing
the log level. To test this, just comment the static initialization block and run the SortingJulDemo
class. The log messages in the console are now printed as depicted in Listing 9-9.

Jun 06, 2021 11:40:46 AM com.apress.bgn.nine.SortingJulDemo main

INFO: Sorting an array with merge sort: 5 1 4 2 3

Jun 06, 2021 11:40:46 AM com.apress.bgn.nine.algs.MergeSort sort

INFO: Call sort of [low,high]: [0 4] 5 1 4 2 3

Jun 06, 2021 11:40:46 AM com.apress.bgn.nine.algs.MergeSort sort

INFO: Call sort of [low,high]: [0 2] 5 1 4

Jun 06, 2021 11:40:46 AM com.apress.bgn.nine.algs.MergeSort sort

INFO: Call sort of [low,high]: [0 1] 5 1

Jun 06, 2021 11:40:46 AM com.apress.bgn.nine.algs.MergeSort sort

INFO: Call sort of [low,high]: [0 0] 5

other log messages omitted

Listing 9-9 Values Being Printed During the Execution of the Merge-Sort Proposed Implementation When Logging is Done Using JUL with
the Default Con�iguration

Beside thew SimpleFormatter , there is another class that can be used to format log messages named
XMLFormatter that formats the messages as XML (Extensible Markup Language). The XML format of
writing data is de�ined by a set of rules for encoding the data that is both human-readable and machine
readable. Also, the set of rules makes it easy to validate and �ind errors.1 Since for XML it makes no sense for
the messages to be written the console, the FileHandler class should be used do direct the log messages
to a �ile. The modi�ications to be added to the con�iguration �ile are depicted in Listing 9-10.

handlers=java.util.logging.FileHandler

java.util.logging.FileHandler.pattern=chapter09/out/chapter09-log.xml

.level=ALL

java.util.logging.ConsoleHandler.formatter=java.util.logging.XMLFormatter

Listing 9-10 Properties Used to Con�igure the JUL Logger to Write Log Messages as XML to a File

Using the con�iguration �ile with the contents shown in Listing 9-10 when running the
SortingJulDemo class, a �ile named chapter09-log.xml is generated under chapter09/out and
contains entries that look like the one depicted in Listing 9-11:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE log SYSTEM "logger.dtd">

<log>

 <record>

 <date>2021-06-06T11:03:44.200054Z</date>

 <millis>1622977424200</millis>

 <nanos>54000</nanos>

 <sequence>0</sequence>

 <logger>com.apress.bgn.nine.SortingJulDemo</logger>

 <level>INFO</level>

 <class>com.apress.bgn.nine.SortingJulDemo</class>

 <method>main</method>

 <thread>1</thread>

 <message>Sorting an array with merge sort: 5 1 4 2 3 </message>

 </record>

<!-- other log messages omitted-->

</log>

Listing 9-11 Logging Messages as XML

The logging output can also be customized by providing a custom class, the only condition is for the class
to extend the java.util.logging.Formatter class, or any of its JDK subclasses.

In the previous code samples only log.info(..) calls were used, because the code is quite basic;
there is little room for anything unexpected to happen (there are no external resources involved that might
be unavailable).

The code can be modi�ied to allow the user to insert the elements of the array. Code to treat the case
when the user does not provide any data and code to treat the case when user inserts bad data should be
added to the class. For example, if the user does not provide any data, a SEVERE log message should be
printed, and the application should terminate. If the user introduces invalid data, the valid data should be
used, and warning should be printed for elements that are not integers. This means that the
SortingJulDemo class changes as depicted in Listing 9-12.

package com.apress.bgn.nine;

// imports omitted

public class SortingJulDemo {

 private static final Logger log =

Logger.getLogger(SortingJulDemo.class.getName());

 static {

 try {

 LogManager logManager = LogManager.getLogManager();

 logManager.readConfiguration(new

FileInputStream("./chapter09/logging-

jul/src/main/resources/logging.properties"));

 } catch (IOException exception) {

 log.log(Level.SEVERE, "Error in loading configuration",

exception);

 }

 }

 public static void main(String... args) {

 if (args.length == 0) {

 log.severe("No data to sort!");

 return;

 }

 int[] arr = getInts(args);

 final StringBuilder sb = new StringBuilder("Sorting an array with

merge sort: ");

 Arrays.stream(arr).forEach(i -> sb.append(i).append(" "));

 log.info(sb.toString());

 IntSorter mergeSort = new MergeSort();

 mergeSort.sort(arr, 0, arr.length - 1);

 final StringBuilder sb2 = new StringBuilder("Sorted: ");

 Arrays.stream(arr).forEach(i -> sb2.append(i).append(" "));

 log.info(sb2.toString());

 }

 /**

 * Transforms a String[] to an int[] array

 * @param args

 * @return an array of integers

 */

 private static int[] getInts(String[] args) {

 List<Integer> list = new ArrayList<>();

 for (String arg : args) {

 try {

 int toInt = Integer.parseInt(arg);

 list.add(toInt);

 } catch (NumberFormatException nfe) {

 log.warning("Element " + arg + " is not an integer and

cannot be added to the array!");

 }

 }

 int[] arr = new int[list.size()];

 int j = 0;

 for (Integer elem : list) {

 arr[j++] = elem;

 }

 return arr;

 }

}

Listing 9-12 SortingJulDemo Using an Array of Elements Provided as Argument for the main(..) Method

As you can see the arr array is no longer hardcoded in the main(..) method, but the values that this
method receives as arguments become the array to be sorted and are converted from String values to int
values by the getInts(..) method . The person executing this program, can provide the arguments from
the command line, but because we are using IntelliJ IDEA, there is an easier way to do that. If you now run
the program without providing any arguments, this is what will be printed in the console:

[2021-06-06 12:16:14] [SEVERE] No data to sort!

The execution stops right there, because there is nothing to sort. Since you’ve probably run this class a
few times, IntelliJ IDEA probably created a launcher con�iguration for you that you can customize and
provide arguments for the execution. Just take a look at Figure 9-5 and try to edit your con�iguration as it is
depicted there, by adding the recommended values as program arguments.

Figure 9-5 IntelliJ IDEA launcher for the SortingJulDemo class

Running this version of the SortingJulDemo with the default console logging con�igured produces a
few extra log messages, as depicted in Listing 9-13.

[2021-06-06 12:21:35] [WARNING] Element a is not an integer and cannot be

added to the array!

[2021-06-06 12:21:35] [WARNING] Element b is not an integer and cannot be

added to the array!

[2021-06-06 12:21:35] [WARNING] Element - is not an integer and cannot be

added to the array!

[2021-06-06 12:21:35] [WARNING] Element ds is not an integer and cannot be

added to the array!

[2021-06-06 12:21:35] [INFO] Sorting an array with merge sort: 5 3 2 1 4

[2021-06-06 12:21:35] [INFO] Call sort of [low,high]: [0 4] 5 3 2 1 4

other log messages omitted

Listing 9-13 Logging Messages of Level WARNING Being Shown During Execution of the New Version of SortingJulDemo

We mentioned in the previous section that writing logs can affect performance in some cases. When the
application is running in a production system, we might want to re�ine the logging con�iguration to �ilter out
less important log messages and keep only those that notify the risk of a problem. In the previous
con�iguration examples, there was a con�iguration line that enabled all log messages to be printed:

java.util.logging.ConsoleHandler.level=ALL

Or the more general format that works for any java.util.logging.Handler subclass:

.level=ALL

If the value of this property is changed to OFF, nothing will be printed. The log levels have integer values
assigned to them, and those values can be used to compare the severity of the messages. As a rule, if you
con�igure a certain level of messages, more severe messages will be printed as well. So if we set that
property to INFO, WARNING messages will be printed as well. The values for the severity levels of messages
are de�ined in the java.util.logging.Level class and if you open that class in your editor, you can see
the integer values assigned to each of them as depicted in Listing 9-14.

package java.util.logging;

// import statements omitted

public class Level implements java.io.Serializable {

 public static final Level OFF = new Level("OFF",Integer.MAX_VALUE,

defaultBundle);

 public static final Level SEVERE = new Level("SEVERE",1000,

defaultBundle);

 public static final Level WARNING = new Level("WARNING", 900,

defaultBundle);

 public static final Level INFO = new Level("INFO", 800, defaultBundle);

 public static final Level CONFIG = new Level("CONFIG", 700,

defaultBundle);

 public static final Level FINE = new Level("FINE", 500, defaultBundle);

 public static final Level FINER = new Level("FINER", 400,

defaultBundle);

 public static final Level FINEST = new Level("FINEST", 300,

defaultBundle);

 public static final Level ALL = new Level("ALL", Integer.MIN_VALUE,

defaultBundle);

 // other comments and code omitted

}

Listing 9-14 The Integer Valued Speci�ic to the Log Levels

In the previous con�iguration by changing .level=ALL to .level=WARNING, we would expect to see
all log messages of levels WARNING and SEVERE. Running the SortingJulDemo class with the previous
arguments we should see only the WARNING level messages, as depicted in Listing 9-15.

[2021-06-06 17:12:29] [WARNING] Element a is not an integer and cannot be

added to the array!

[2021-06-06 17:12:29] [WARNING] Element b is not an integer and cannot be

added to the array!

[2021-06-06 17:12:29] [WARNING] Element - is not an integer and cannot be

added to the array!

[2021-06-06 17:12:29] [WARNING] Element ds is not an integer and cannot be

added to the array!

Listing 9-15 Only Logging Messages of Level WARNING Being Shown During Execution of the SortingJulDemo

To de�ine log messaging formatting there are more ways: system properties can be used or
programmatically, a formatter can be instantiated and set on a logger instance. It really depends on the
speci�ics of the application. This won’t be covered in the book, however, and if you are interested in reading
more about Java logging with JUL I recommend this tutorial:
https://www.vogella.com/tutorials/Logging/article.html. The reason for this is because
JUL is known for its weak performance compared to other logging libraries. Another thing you have to take
into account is that if the application you are building is a complex one with a lot of dependencies, these
dependencies might use different logging libraries. How do you con�igure and use them all? This is where a
logging facade proves useful. The next section will show you how to use the most renown Java logging
facade: SLF4J.

https://www.vogella.com/tutorials/Logging/article.html

Logging with SLF4J and Logback
The most renown Java logging facade is Simple Logging Facade for Java (SLF4J),2 which serves as a logging
abstraction for various logging frameworks. This means that in your code you will use the SLF4J interfaces
and classes, and behind the scenes all the work will be done by a concrete logging implementation found in
the classpath. The best part? You can change the logging implementation any time, and your code will still
compile and execute correctly and there will be no need to change anything in it.

In the code samples covered until now in this chapter the code is tied to JUL; if we want for some reason
to change the logging library, we need to change the existing code as well. The �irst step is to change our
code to use the SLF4J Application Programming Interface (API).3 Another advantage of using SLF4J is that
the con�iguration is read automatically if the logging con�iguration �ile is on the classpath. This means the
LogManager initialization block that we needed for JUL is not needed for SLF4J, as long as the
con�iguration �ile is named according to the standard of the concrete logging implementation used. This
section starts with the transformation of main SortingJulDemo class in Listing 9-5 to the
SortingSlf4jDemo shown in Listing 9-16, by replacing JUL con�iguration and log statements with SLF4J
speci�ic ones.

package com.apress.bgn.nine;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

// other imports omitted

public class SortingSlf4jDemo {

 private static final Logger log =

LoggerFactory.getLogger(SortingSlf4jDemo.class);

 public static void main(String... args) {

 if (args.length == 0) {

 log.error("No data to sort!");

 return;

 }

 final StringBuilder sb = new StringBuilder ("Sorting an array with

merge sort: ");

 Arrays.stream(arr).forEach(i -> sb.append(i).append(" "));

 log.debug(sb.toString());

 IntSorter mergeSort = new MergeSort();

 mergeSort.sort(arr, 0, arr.length - 1);

 final StringBuilder sb2 = new StringBuilder("Sorted: ");

 Arrays.stream(arr).forEach(i -> sb2.append(i).append(" "));

 log.info(sb2.toString());

 }

}

Listing 9-16 The SortingSlf4jDemo Class

SLf4J de�ines an API that maps to the concrete implementation provided by a logging library that hasn't
been mentioned yet. The SLf4J log statements look pretty similar, but the log levels are a little different. The
following list explains the most common SLf4J log statements:

log.error(..) is used for logging messages at the ERROR level; usually these are messages that are
used when there is a critical failure of the application and normal execution cannot continue. There is
more than one form for this method, and exceptions and objects can be passed as arguments to it so that
the state of the application at the moment of the failure can be assessed.

log.warn(..) is used for logging messages at the WARN level; usually these messages are printed to
notify that the application is not functioning normally and there might be reason to worry, in the same
way as for the previous method, that there is more than one form of for it and exceptions and objects can
be passed as arguments to better assess the current state of the application.
log.info(..) is used for logging messages at the INFO level; this type of messages is informational, to
let the user know that everything is okay and working as expected.
log.debug(..) is used for logging messages at the DEBUG level; usually these messages are used to
print intermediary states of the application, to check that things are going as expected and eventually in
case of a failure you can trace the evolution of the application objects.
log.trace(..) is used for logging messages at the TRACE level; this type of messages is informational
of a very low importance.

The logging concrete implementation used for this example is called Logback,4 and it was chosen for the
previous edition of this book because at the time it was the only library that worked with SLF4J after
modules were introduced in Java 9.

Logback is viewed as the successor of Log4j,5 another popular logging implementation.

 Fun fact Log4j, SLF4j and Logback were all founded by the same person: Ceki Gülcü. He is currently
working in the latter two. As for Log4j, it is currently being replaced by Log4j2, an upgrade that provides
signi�icant improvements over its predecessor.

Logback implements SLF4J natively, there is no need to add another bridge library and it is faster as the
Logback internals have been rewritten to perform faster on critical execution points. After modifying our
classes to use SLF4J all we have to do is to add Logback as a dependency of our application and add a
con�iguration �ile under the src/main/resources directory. The con�iguration �ile can be written in XML
or Groovy and the standard requires for it to be named logback.xml. Listing 9-17 depicts the contents of
this �ile for this sections’ example:

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <appender name="console" class="ch.qos.logback.core.ConsoleAppender">

 <encoder>

 <pattern>%d{HH:mm:ss.SSS} %-5level %logger{5} - %msg%n</pattern>

 </encoder>

 </appender>

 <logger name="com.apress.bgn.nine" level="debug"/>

 <root level="info">

 <appender-ref ref="console" />

 </root>

</configuration>

Listing 9-17 The Contents of the logback.xml Con�iguration File

The ch.qos.logback.core.ConsoleAppender class writes log messages in the console and the
<pattern> element value de�ines the format of the log messages. Lobgack can format fully quali�ied class
names by shortening up package names to their initials; thus, it allows for a compact logging without losing
details. This makes Logback one of the favorite logging implementation of the Java development world at the
moment.

The package names, if they are made up of more than one part, are reduced to the �irst letter of each
part. The logging calls in the MergeSort class were all replaced with log.debug(..) because these
messages are intermediary and not really informational, just samples of state of the objects used by the
application during the execution of the process. The general logging level of the application can be set using
a <root> element to the desired level, but different logging levels can be set for classes or packages or
subset of packages using <logger> elements.

Using the previous con�iguration, running the SortingSlf4jDemo yields the output shown in Listing
9-18.

18:59:32.473 WARN c.a.b.n.SortingSlf4jDemo - Element a is not an integer

and cannot be added to the array!

18:59:32.475 WARN c.a.b.n.SortingSlf4jDemo - Element b is not an integer

and cannot be added to the array!

18:59:32.475 WARN c.a.b.n.SortingSlf4jDemo - Element - is not an integer

and cannot be added to the array!

18:59:32.475 WARN c.a.b.n.SortingSlf4jDemo - Element ds is not an integer

and cannot be added to the array!

18:59:32.477 DEBUG c.a.b.n.SortingSlf4jDemo - Sorting an array with merge

sort: 5 3 2 1 4

18:59:32.479 DEBUG c.a.b.n.a.MergeSort - Call sort of : [0 4] 5 3 2 1 4

18:59:32.479 DEBUG c.a.b.n.a.MergeSort - Call sort of : [0 2] 5 3 2

18:59:32.479 DEBUG c.a.b.n.a.MergeSort - Call sort of : [0 1] 5 3

18:59:32.480 DEBUG c.a.b.n.a.MergeSort - Call sort of : [0 0] 5

18:59:32.480 DEBUG c.a.b.n.a.MergeSort - Call sort of : [1 1] 3

18:59:32.480 DEBUG c.a.b.n.a.MergeSort - Called merge of: [0 1 0],) 3 5

18:59:32.480 DEBUG c.a.b.n.a.MergeSort - Call sort of : [2 2] 2

18:59:32.480 DEBUG c.a.b.n.a.MergeSort - Called merge of: [0 2 1],) 2 3 5

18:59:32.480 DEBUG c.a.b.n.a.MergeSort - Call sort of : [3 4] 1 4

18:59:32.480 DEBUG c.a.b.n.a.MergeSort - Call sort of : [3 3] 1

18:59:32.480 DEBUG c.a.b.n.a.MergeSort - Call sort of : [4 4] 4

18:59:32.480 DEBUG c.a.b.n.a.MergeSort - Called merge of: [3 4 3],) 1 4

18:59:32.480 DEBUG c.a.b.n.a.MergeSort - Called merge of: [0 4 2],) 1 2 3 4

5

18:59:32.481 INFO c.a.b.n.SortingSlf4jDemo - Sorted: 1 2 3 4 5

Listing 9-18 Log Messages Printed by SLF4J + Logback

As you can see, the fully quali�ied class name com.apress.bgn.nine.SortingSlf4jDemo was
shortened to c.a.b.n.SortingSlf4jDemo. The con�iguration �ile can be provided to the program as a
VM argument, which means logging format can be con�igured externally. When launching the class just use -
Dlogback.configurationFile=\temp\ext-logback.xml as a VM argument if you want to
provide a different log �ile.

Logback can direct output to a �ile as well, all we have to do is add a con�iguration using the
ch.qos.logback.core.FileAppender class and direct the output to the �ile by adding an
<appender> element in the <root> con�iguration. A con�iguration sample is depicted in Listing 9-19.

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <appender name="file" class="ch.qos.logback.core.FileAppender">

 <file>chapter09/logging-slf4j/out/output.log</file>

 <append>true</append>

 <encoder>

 <pattern>%d{HH:mm:ss.SSS} %-5level %logger{5} - %msg%n</pattern>

 </encoder>

 </appender>

 <appender name="console" class="ch.qos.logback.core.ConsoleAppender">

 <encoder>

 <charset>UTF-8</charset>

 <pattern>%d{HH:mm:ss.SSS} %-5level %logger{5} - %msg%n</pattern>

 </encoder>

 </appender>

 <logger name="com.apress.bgn.nine" level="debug"/>

 <root level="info">

 <appender-ref ref="file"/>

 <appender-ref ref="console" />

 </root>

</configuration>

Listing 9-19 Logback Con�iguration to Direct Log Messages to a File

In the previous example, the original con�iguration was kept so that log messages are also printed in the
console. Thus, proving that log messages can be directed to two destinations at once.

What if the log �ile becomes too big and cannot be opened? There’s an approach for that. A different class
named ch.qos.logback.core.rolling.RollingFileAppender can be con�igured to write a �ile
up to a con�igured limit in size and then start another �ile. The RollingFileAppender and requires two
arguments:

an instance of a type that implements ch.qos.logback.core.rolling.RollingPolicy that
provides functionality to write a new log �ile (operation also called roll-over)
and an instance of a type that implements
ch.qos.logback.core.rolling.TriggeringPolicy<E> that con�igures the conditions under
which the rollover will happen.

Also, a single instance of a type that implements both of the interfaces can be used to con�igure the
logger. Rolling over a log �ile means that the log �ile is renamed according to the con�iguration, usually—the
last date the �ile was accessed is added to its name, and a new log �ile is created with the log �ile named
con�igured (and without a date suf�ix, to make it clear this is the �ile logs are currently dumped in). Such a
Logback con�iguration is depicted in Listing 9-20.

<?xml version="1.0" encoding="UTF-8"?>

<configuration scan="true">

 <appender name="r_file"

class="ch.qos.logback.core.rolling.RollingFileAppender">

 <file>chapter09/logging-slf4j/out/output.log</file>

 <rollingPolicy

class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">

 <fileNamePattern>chapter09/logging-slf4j/out/output_%d{yyyy-MM-

dd}.%i.log</fileNamePattern>

 <timeBasedFileNamingAndTriggeringPolicy

class="ch.qos.logback.core.rolling.SizeAndTimeBasedFNATP">

 <maxFileSize>10MB</maxFileSize>

 </timeBasedFileNamingAndTriggeringPolicy>

 <maxHistory>30</maxHistory>

 </rollingPolicy>

 <encoder>

 <charset>UTF-8</charset>

 <pattern>%d{HH:mm:ss.SSS} %-5level %logger{5} - %msg%n</pattern>

 </encoder>

 </appender>

 <appender name="console" class="ch.qos.logback.core.ConsoleAppender">

 <encoder>

 <pattern>%d{HH:mm:ss.SSS} %-5level %logger{5} - %msg%n</pattern>

 </encoder>

 </appender>

 <logger name="com.apress.bgn.nine" level="info"/>

 <root level="info">

 <appender-ref ref="r_file"/>

 <appender-ref ref="console" />

 </root>

</configuration>

Listing 9-20 Logback Con�iguration to Direct Log Messages to a File of a Reasonable Limit

In the previous con�iguration the <file> element con�igures the location and the name of the log �ile.
The <rollingPolicy> element con�igures the name the log �ile will receive when log messages will

no longer be written in it, using the <fileNamePattern> element.
In the previous con�iguration the output.log �ile will be renamed to output_2020-07-22.log, for

example, and then a new output.log �ile will be created for next day the application is running.
The <timeBasedFileNamingAndTriggeringPolicy> element con�igures when the new log �ile

should be created and how big the output.log �ile should be before a new �ile is created. The con�igured
size in the previous example is 10MB. If a log �ile gets bigger that 10MB before the end of the day, the �ile is
renamed to output_2018-07-22.1.log. An index is added to the name and a new output.log is
created.

The <maxHistory> element con�igures the lifespan of a log �ile, and in this example is 30 days.
Logging is a powerful tool when used properly. When not used properly can easily lead to performance

problems. Also, logging everything is not really useful, because looking for a problem in a big logging �ile is
like looking a needle in a haystack.

Another thing worth noticing is that in the previous code, StringBuilder instances are used to
construct big log messages, that are to be printed at a certain level. What happens if logging for that level is
disabled via con�iguration? If you guessed that time and memory is consumed creating those messages, even
if they are not logged, you are right. So what do we do? The creators of SLF4J have thought of this as well,
and added methods to test if a certain logging level is enabled and statements creating elaborate log
messages can be encapsulated in an if statement. This being said, the SortingSlf4jDemo.main(..)
method can be made more effective by rewriting it as shown in Listing 9-21.

package com.apress.bgn.nine;

// import statements omitted

public class SortingSlf4jDemo {

 private static final Logger log =

LoggerFactory.getLogger(SortingSlf4jDemo.class);

 public static void main(String... args) {

 if (args.length == 0) {

 log.error("No data to sort!");

 return;

 }

 int[] arr = getInts(args);

 if (log.isDebugEnabled()) {

 final StringBuilder sb = new StringBuilder("Sorting an array

with merge sort: ");

 Arrays.stream(arr).forEach(i -> sb.append(i).append(" "));

 log.debug(sb.toString());

 }

 IntSorter mergeSort = new MergeSort();

 mergeSort.sort(arr, 0, arr.length - 1);

 if (log.isInfoEnabled()) {

 final StringBuilder sb2 = new StringBuilder("Sorted: ");

 Arrays.stream(arr).forEach(i -> sb2.append(i).append(" "));

 log.info(sb2.toString());

 }

 }

}

Listing 9-21 Logging Ef�iciently in Class SortingSlf4jDemo

In the previous code sample, if the SLF4J con�iguration for the com.apress.bgn.nine package is set
to info, the message starting with Sorting an array with merge sort: … is no longer created nor printed
because the log.isDebugEnabled() returns false, so the code enclosed in the if statement is no
longer executed. The Logger class contains if..Enabled() methods for any logger level.

This is all that can be said in this section about logging. Just keep in mind that you should use it
moderately, pay very close attention when you decide to log messages in loops, and for big application
always use a logging façade; in Java, for 99% projects this facade is SLF4J.

Debug Using Assertions
Another way to debug your code is using assertions. If you remember the section about Java keywords, you
probably remember the assert keyword. The assert keyword is used to write an assertion statement
that is just a test of your assumptions on the program execution. In the previous examples we had the user
provide the input for our sorting program, so in order for our program to do the right thing, it is assumed
that the user will provide the proper input; this means an array with size bigger than 1, because there is no
point to run the algorithm for a single number. So what does this assertion look like in the code? The answer
to this question is depicted in Listing 9-22.

package com.apress.bgn.nine;

// other import statements omitted

import static com.apress.bgn.nine.SortingSlf4jDemo.getInts;

public class AssertionDemo {

 public static void main(String... args) {

 int[] arr = getInts(args);

 assert arr.length > 1;

 IntSorter mergeSort = new QuickSort();

 mergeSort.sort(arr, 0, arr.length - 1);

 final StringBuilder sb2 = new StringBuilder("Sorted: ");

 Arrays.stream(arr).forEach(i -> sb2.append(i).append(" "));

 System.out.println(sb2);

 }

}

Listing 9-22 Asserting the Size of User-Provided Array

Running the previous code without providing any arguments to the program is possible even if we have
an assertion statement in it. As expected, it does nothing, because there is no array to be sorted.

 The reason for this is that assertions need to be enabled using a VM argument: -ea.

To specify this argument, you add it to the command when executing from the command line, but as
we’ve used the editor until now, you can add it in the VM options text box of the IntelliJ IDEA launcher, as
depicted in Figure 9-6.

Figure 9-6 IntelliJ IDEA launcher for the AssertionDemo class with the -ea VM argument set

When assertions are enabled, running the previous code ends with an java.lang.AssertionError
being thrown, because the expression of the assertions is evaluated to false, since obviously the
arr.length is clearly not bigger than 1 when no argument is provided. Assertions have two forms. There
is the simple form, when they have just the expression to evaluate, the assumption to test:

assertion [expression];

In this case, the java.lang.AssertionError being thrown just prints the line where the
assumption is asserted for the current run of the program, together with the module and the full classname:

Exception in thread "main" java.lang.AssertionError

at

chapter.nine.slf4j/com.apress.bgn.ch9.AssertionDemo.main(AssertionDemo.java:48

The most complex form of an assertion adds in another expression to be evaluated or a value to be used
in the stack to tell the user which assumption was wrong.

assertion [expression1] : [expression2];

So if we replace:

assert arr.length > 1;

with

assert arr.length > 1 : "Not enough data to sort!";

When the java.lang.AssertionError is thrown, now it also depicts the "Not enough data to sort!"
message, which makes it clear why the assertion statement is preventing the rest of the code from being
executed.

Exception in thread "main" java.lang.AssertionError: Not enough data to sort!

at

chapter.nine.slf4j/com.apress.bgn.nine.AssertionDemo.main(AssertionDemo.java:4

Or we could just print the size of the array:

assert arr.length > 1 : arr.length;

Or both:

assert arr.length > 1 : "Not enough data to sort! Number of values: " +

arr.length;

Assertions can be used before and after the piece of code that needs to be debugged. In the previous
case, the assertion was used as a precondition of the execution because the failure of the assertion prevents
code from being executed.

Assertions can also be used as postconditions, to test the outcome of executing a piece of code.
In the previous code snippet, the assertion was used to test the correctness of the user provided input. In

situations like this the restriction of a valid input should be obeyed, whether assertions are enabled or not.
Sure, if our array is empty or contains just a single element, this is not a problem, as the algorithm is not
executed and this does not lead to a technical failure. There are a few rules to obey or things to look for
when writing code using assertions, and they are listed here:

Assertions should not be used to check the correctness of arguments provided to public methods.
Correctness of arguments should be something tested in the code, and a proper RuntimeException
should be thrown. Validating public methods arguments should not be avoidable.

 Unfortunately, to keep things simple, the previous code samples showing how assertions work,
break this rule. After all, the presence of valid arguments for the main(..) is method is checked using
an assertion.

Assertions should not be used to do work that is required for your application to run properly. The
main reason for this is obviously that assertions are disabled by default and having them disabled leads to
that code not being executed, so the rest of the application will actually not function properly because of
the missing code. Assuming no arguments are provided to the main(..) method in the previous
example, and assertion could be used to initialize the array being processed with a default value. But that
doesn’t mean you should! Code like the next line is bad, because disabling assertions, removes the
initialization of the array with a default value.

assert arr.length > 1 : arr = new int[]{1, 2, 3};

For performance reasons, do not use expressions that are expensive to evaluate in assertions. This
rule requires no explanation, even if assertions are disabled by default, imagine that somebody enables
them by mistake on a production application, that would be quite unfortunate, wouldn’t it? The next
example shows an assertion expression, that initializes the array with a default value if none is suppiled,
but after waiting �ive minutes. The next assertions breaks all three rules.

assert arr.length > 1 : sleepFiveMinsThenInit.apply(5L);

//the function body

Function<Long, int[]> sleepFiveMinsThenInit = aLong -> {

 try {Thread.sleep(Duration.ofMinutes(aLong).toMillis()); } catch

(InterruptedException e) {}

 return new int[]{1, 2, 3};

};

If you are interested in using assertions, just keep in mind those three rules, and you should be �ine.

Step-By-Step Debugging
If you do not want to write log messages or use assertions, but you still want to inspect values of variables
during the execution of a program, there is a way to do that using an IDE, which was mentioned in previous
chapters: pausing the execution using breakpoints and using the IDE to inspect variable contents or execute
simple statements to check if your program is performing as expected.

A breakpoint is a mark set on an executable line of code (not a comment line, nor an empty line, and not
a declaration). In IntelliJ IDEA, to set a breakpoint you just have to click the gutter area on the line you are
interested in, or select the line and from the Run menu select Toggle Line Breakpoint. When a breakpoint
is in place a red bubble appears on the line in the gutter section. In Figure 9-7 you can see a few breakpoints
in IntelliJ IDEA.

Figure 9-7 IntelliJ IDEA breakpoints

Once the breakpoints are in place, when the application runs in debug mode, it will pause on each of the
marked lines. During the pause you can continue the execution step by step, inspect values of the variables,
and even evaluate expressions in the context of the running application. IntelliJ IDEA is very helpful with
this, as it shows you the contents of every variable in each line of the code currently being executed. In
Figure 9-8 the SortingSlf4jDemo class is running in debug mode and is paused during execution using
breakpoints.

Figure 9-8 IntelliJ IDEA SortingSlf4jDemo class paused during execution

To run an application in debug mode, instead of starting the launcher normally, you can start it by
clicking on the green bug-shaped (marked with 1. in the previous image) button that is right next to the
green triangle-shaped button that is used to run the application normally.

The application runs and stops at the �irst line marked with a breakpoint. From that point on the
developer can do the following things:

inspect values of the variables used on the line with the breakpoint, by reading the values depicted by the
editor there.
continue the execution until the next breakpoint by clicking the green triangle in the Debug section,
marked in the previous image with 2.
stop the execution by clicking the red square-shaped button in the Debug section, marked in the previous
image with 2.
disable all breakpoints by clicking red bubble cut diagonally shaped button in the Debug section, marked
in the previous image with 2.
continue execution to the next line of code by clicking the blue arrow with a 90 angle button in the
Debugger section, marked in the previous image with 3.
continue execution by entering the method in the current line of code by clicking on the button with a
blue arrow oriented down, in the Debugger section, marked in the previous image with 3.

 The red arrow oriented down is used to step into methods provided by third-party libraries. Intellij
tries to �ind source code for that method. If it can’t �ind source code, then it might show you an auto
generated stub based on the byte code/library. The blue arrow only jumps into methods in the project.

continue execution by stepping out of the current method by clicking on the button with a blue arrow
oriented up, in the Debugger section, marked in the previous image with 3.
or continue the execution to the line pointed at by the cursor, by clicking on the button with a diagonal
arrow pointing to a cursor sign in the Debugger section, marked in the previous image with 3.

evaluate your own expressions by adding them to the Watches section, marked in the previous image
with 4. The only condition is that the expressions only use variables that are accessible in the context of
the breakpoint line (e.g., are part of the same method body or class body, and the accessor is not
important, private �ields can be inspected too).

Another way to evaluate expression in the context of the application currently running is just to click
right on the �ile where your execution is currently paused and from the menu opened select option Evaluate
Expression. A dialog window is opened where complex expressions can be written and evaluated on the
spot, as depicted in Figure 9-9.

Figure 9-9 IntelliJ IDEA expression evaluation during debugging session

Most Java smart editors provide means to run a Java application in debug mode; just make sure to clean
up your watches section from time to time. If the expressions added in the watches section expressions are
expensive to evaluate, it might affect the performance of the application. Also, be aware of expressions that
use streams, since these might make the application fail, as proven in the previous chapter.

Inspecting Running Application Using Java Tools
Aside from the executables to compile Java code and execute or packaging of Java byte code, the JDK
provides a set of utility executables that can be used to debug and inspect the state of a running Java
application. This section covers the most useful of them. Without further ado, let’s do this!

jps

A running Java application has a unique process id. This is how an operating system keeps track of all
applications running in parallel at the same. You can see the process ids in utilities such as Process
Explorer in Windows and Activity Monitor in macOs, but if you are comfortable enough working in the
console, you might prefer using the jps (short for Java Virtual Machine Process Status Tool), executable
provided by the JDK because it only focuses on Java processes.

When calling jps from the console, all Java process ids will be listed, together with the main class name
or some details that are exposed by the application API that will help you identify the application running.
This is useful when an application crashes, but the process remains in a hanging state. This can be painful
when the application uses resources such as �iles or network ports, because it might block them and prevent

you from using them. When executing jps on my computer (I have a Mac) these are the Java processes I see
running:

> jps

41066

51099 Launcher

51100 SortingSlf4jDemo

51101 Jps

As you can see from the previous listing, jps includes itself in the output, because it is after all a Java
process. The process with id 51100 is the execution of the SortingSlf4jDemo class, obviously. The
51099 process is a launcher application that IntelliJ IDEA uses to start the execution of the
SortingSlf4jDemo class. The 41066 process does not have any description, but at this point I can
identify the process myself because I know I have IntelliJ IDEA opened, which is itself a Java application. The
advantage of being able to know the process ids is that you can kill them when they end up hanging and
blocking resources. Let’s assume that the process started by the execution of SortingSlf4jDemo ended
up hanging. To kill a process all operating systems, provide a version of the kill command. For macOS and
Linux you should execute the following:

kill -9 [process_id]

For this example, if I call kill -9 51100 and then call jps I can see that SortingSlf4jDemo process
is no longer listed.

> jps

41066

51099 Launcher

51183 Jps

I still have the Launcher process, but that is a child process of IntelliJ IDEA so there is no point in killing it
because next time I run a main class in the IDE, the process will be started again.

jps is quite a simple tool to use for this speci�ic purpose, but sometimes when applications are installed
on servers with minimal setup, it might be all you have. So it’s good to know it exists.

jcmd

The jcmd is another JDK utility that can be useful. It can be used to send diagnostic command requests to
the JVM that can help to troubleshoot and diagnose JVM and running Java applications. It must be used on
the same machine where the JVM is running, and the result of calling it without any arguments is that it
shows all Java processes currently running on the machine, including itself. Beside the process ids, jcmd
also displays the command used to start their execution.

> jcmd

51205 org.jetbrains.jps.cmdline.Launcher /Applications/IntelliJ IDEA 2021.1

EAP.app/Contents/lib/util.jar:

...

IntelliJ IDEA command details omitted

51206 chapter.nine.slf4j/com.apress.bgn.nine.SortingSlf4jDemo 5 a 3 - 2 b 1

ds 4

51207 jdk.jcmd/sun.tools.jcmd.JCmd

When jcmd is run with a Java process id and the text help as argumens, it displays all additional
commands you can use on that process. This will work if the application is currently running and not paused
using a breakpoint. The SortingSlf4jDemo is currently paused when I am writing this; also, its execution
takes too little for the jcmd to be used. Another Java process created for running the
BigSortingSlf4jDemo class that sorts an array of 100.000.000 randomly generated numbers is used as
an example to produce the output depicted in Listing 9-23.

> jcmd 51301 help

51301:

The following commands are available:

Compiler.CodeHeap_Analytics

Compiler.codecache

Compiler.codelist

Compiler.directives_add

Compiler.directives_clear

Compiler.directives_print

Compiler.directives_remove

Compiler.queue

GC.class_histogram

GC.finalizer_info

GC.heap_dump

GC.heap_info

GC.run

GC.run_finalization

JFR.check

JFR.configure

JFR.dump

JFR.start

JFR.stop

JVMTI.agent_load

JVMTI.data_dump

ManagementAgent.start

ManagementAgent.start_local

ManagementAgent.status

ManagementAgent.stop

Thread.print

VM.class_hierarchy

VM.classloader_stats

VM.classloaders

VM.command_line

VM.dynlibs

VM.events

VM.flags

VM.info

VM.log

VM.metaspace

VM.native_memory

VM.print_touched_methods

VM.set_flag

VM.stringtable

VM.symboltable

VM.system_properties

VM.systemdictionary

VM.uptime

VM.version

help

Listing 9-23 The Output of jcmd [pid] help on a Java Process Doing Some Serious Work

It is not the objective of this book to cover them all, as these are quite advanced features of Java, but
probably you have a basic idea of the scope of each command. As an example, in Listing 9-24 you can see the
output of calling jcmd 51301 GC.heap_info:

> jcmd 51301 GC.heap_info

51301:

 garbage-first heap total 3923968K, used 2534849K [0x0000000700000000,

0x0000000800000000)

 region size 2048K, 766 young (1568768K), 1 survivors (2048K)

 Metaspace used 5386K, committed 5504K, reserved 1056768K

 class space used 595K, committed 640K, reserved 1048576K

Listing 9-24 The Output of jcmd [pid] GC.heap_info on a Java Process Doing Some Serious Work

If you remember, in Chapter 5 the different types of memory used by the JVM were discussed, and heap
was the memory where all the objects used by an application are stored. This command prints the heap
details, how much of it is used, reserved, how big is a region, and so on. All these details will be covered
more in detail in Chapter 13.

jconsole

jconsole is JDK utility that can be used to inspect various JVM statistics. To use it, you just have to start it
from the command line and connect it to a Java application that is already running. This application is quite
useful, as it can monitor both local and remote JVMs. It can also monitor and manage an application. The
application must expose a port for jconsole to connect to.

To start a Java application and expose a port for an external application, you just have to start the
application with the following VM parameters:

-agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=1044

The transport=dt_socket instructs the JVM that the debugger connections will be made through a
socket. The address=1044 parameter informs it that the port number will be 1044. The port can be any
port bigger than 1024, because those are restricted by the operating system. The suspend=y instructs the
JVM to suspend execution until a debugger such as jconsole is connected to it. To avoid that, suspend=n
should be used.

For our simple example and considering we will use jconsole to debug a Java application on the same
machine, we do not need all that. We just need to start jconsole from the command line and look in the
Local Processes section and identify the Java process we are interested in debugging.

In Figure 9-10 you can see the �irst jconsole dialog window.

Figure 9-10 jconsole �irst dialog window

When the process is running locally it can be easily identi�ied, because it will be named using the module
and the fully quali�ied main class name. For an application as simple as ours we need to make a few tweaks
to make sure that we can actually see a few statistics with jconsole during the run of the application. A
few Thread.sleep(..) statements were added to pause the execution enough for jconsole to connect.
Also, we’ll use quite a big array of data to make sure the statistics are relevant. The
BigSortingSlf4jDemo class is depicted in Listing 9-25.

package com.apress.bgn.nine;

// import statements omitted

public class BigSortingSlf4jDemo {

 private static final Logger log =

LoggerFactory.getLogger(BigSortingSlf4jDemo.class);

 public static void main(String... args) throws InterruptedException {

 Thread.sleep(3000);

 Random random = new Random(5);

 IntStream intStream = random.ints(100_000_000,0,350);

 int[] arr = intStream.toArray();

 if (log.isDebugEnabled()) {

 final StringBuilder sb = new StringBuilder("Sorting an array

with merge sort: ");

 Arrays.stream(arr).forEach(i -> sb.append(i).append(" "));

 log.debug(sb.toString());

 }

 Thread.sleep(3000);

 IntSorter mergeSort = new MergeSort();

 mergeSort.sort(arr, 0, arr.length - 1);

 if (log.isInfoEnabled()) {

 final StringBuilder sb2 = new StringBuilder("Sorted: ");

 Arrays.stream(arr).forEach(i -> sb2.append(i).append(" "));

 log.info(sb2.toString());

 }

 }

}

Listing 9-25 The Contents of the BigSortingSlf4jDemo Class

With this modi�ication the class can be executed normally and connect jconsole to it. After a
successful connection, a window like the one in Figure 9-11 is opened and graphs of the JVM memory
consumption, number of threads of classes loaded, and CPU usage are displayed.

Figure 9-11 jconsole statistics window

There is a tab for each of these statistics that provides more information, and in case of a more complex
application this information can be used to improve performance, identify potential problems, and even
estimate application behavior for desired cases. For our small application the jconsole graphs do not

reveal much, but if you really want to see valuable statistics, install an application like mucommander6 use it
for a while without closing it, and then connect jconsole to it and have fun .

Using jmc
jmc is short for JDK Mission Control. The jmc command starts an advanced Oracle application for
debugging and analysing JVM statistics for a running application. Its of�icial description states that “JMC is a
tool suite for managing, monitoring, pro�iling, and troubleshooting your Java applications that became part
of the JDK utility tools family starting with version 7.” (Feel free to read more about it on the of�icial Oracle
site, if you are interested.)

Similar to previous tools, this utility identi�ies the JAVA processes currently running and provides the
possibility to check out how much memory they require at speci�ic times during execution, how many
threads are running in parallel at a given moment in time, the classes loaded by the JVM, and how much
processing cpu power is required to run a Java application. The JMC has a more friendly interface and one of
its most important components is the Java Flight Recorder that can be used to record all JVM activity while
the application is running. All data collected during a custom time of the execution is useful to diagnose and
pro�ile the application.

To inspect the application while it is running, we open the JMC by running jmc from the command line
and then selecting the process that we recognize as the one running the BigSortingSlf4jDemo main
class based on the same rule as before. We look for a process name containing the module name and the
fully classi�ied class name when we found it, click right on it, and select Start JMX console. You should see
something similar to the image depicted in Figure 9-12.

Figure 9-12 jmc JMX console

As you probably noticed, the interface is de�initely more friendly, and the provided statistics are
de�initely more detailed. Using JMC, everything that happens with the application and JVM during a run can
be recorded and analyzed later, even if the application has stopped running since. The Memory tab at the
bottom of the �igure provides a lot of information regarding the memory used by the application, including
what types of objects are occupying it. Recording detailed information about a Java process requires it to be
started with

-XX:+UnlockCommercialFeatures -XX:+FlightRecorder.

OpenJDK and early access JDKs do not have commercial features or Flight Recorder. These are part of the
Oracle JDK designed to be used only commercially, and requires a paid subscription.

The JMC subject is too advanced and wide for this section; probably an entire book could be written
about its usage and how to interpret the statistics, so we’ll stop here.7

Accessing the Java Process API
Java 9 came with a lot of other improvements beside the Jigsaw modules, one of them being a new and
improved Process API. The Java Process API allows you to start, retrieve information, and manage native
operating system processes. The ability to manipulate processes was there in previous versions of Java, but
it was quite rudimentary. Listing 9-26 shows how a process was created before Java 5:

package com.apress.bgn.nine;

// import section omitted

public class ProcessCreationDemo {

 private static final Logger log =

 LoggerFactory.getLogger(ProcessCreationDemo.class);

 public static void main(String... args) {

 try {

 Process exec = Runtime.getRuntime()

 .exec(new String[] { "/bin/sh", "-c", "echo Java home:

$JAVA_HOME" });

 exec.waitFor();

 InputStream is = exec.getInputStream();

 StringBuilder textBuilder = new StringBuilder();

 Reader reader = new BufferedReader(new InputStreamReader

 (is, Charset.forName(StandardCharsets.UTF_8.name())));

 try {

 int c = 0;

 while ((c = reader.read()) != -1) {

 textBuilder.append((char) c);

 }

 } finally {

 reader.close();

 }

 log.info("Process output -> {}", textBuilder.toString());

 log.info("process result: {}", exec.exitValue());

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

Listing 9-26 Creating a Process Using Pre-Java 5 API

Intercepting output of the started process is a pain, and you can also see that we need to wrap a
BufferedReader instance around the InputStream instance connected to the normal output of the
process.

The process API made things a little more practical. It has at its core a few classes and interfaces, all
having names that start with the Process term. What we’ve done so far with Java executables can be directly
done by writing Java code. The interface that provides an API to access native processes is named
ProcessHandle, and is part of the core Java java.lang package. Similar to the Thread class, there is a
static method named current to call on this interface to retrieve the ProcessHandle instance of the
current running process. Once we have this, we can use its methods to access more process details. The
ProcessHandle provides several static utility methods to access native processes. Java code can be
written to list all processes running on a computer, and they can be sorted based on various criteria. The
piece of code in Listing 2-27 lists all processes that were created by running the java command.

package com.apress.bgn.nine;

// import section omitted

public class ProcessListingDemo {

 private static final Logger log =

LoggerFactory.getLogger(ProcessListingDemo.class);

 public static void main(String... args) {

 Optional<String> currUser = ProcessHandle.current().info().user();

 ProcessHandle.allProcesses().filter(ph ->

ph.info().user().equals(currUser) && ph.info().commandLine().isPresent())

 .filter(ph ->

ph.info().commandLine().get().contains("java"))

 .forEach(p -> {

 log.info("PID: " + p.pid());

 p.info().arguments().ifPresent(s ->

Arrays.stream(s).forEach(a -> log.info(" {}", a)));

 p.info().command().ifPresent(c -> log.info("\t Command:

{}", c));

 });

 }

}

Listing 9-27 Listing All java Processes Using Java 9 Process API

The code listed previously extracts the user from the current running process by obtaining its handle
and calling info() to obtain an instance of the ProcessHandle.Info , an interface that declares a set of
methods that are implemented by the ProcessHandleImpl.Info class to access snapshot information
about the process as the command and arguments that were used to create the process. The output of
running the previous code is printed in the console and might look pretty similar to the output listed in
Listing 9-28. Except, you know, different user, different processes. ;)

INFO c.a.b.n.ProcessListingDemo - PID: 58820

INFO c.a.b.n.ProcessListingDemo - -javaagent:/Applications/IntelliJ

IDEA.app/Contents/lib/idea_rt.jar=55299:/Applications/IntelliJ

IDEA.app/Contents/bin

INFO c.a.b.n.ProcessListingDemo - -Dfile.encoding=UTF-8

INFO c.a.b.n.ProcessListingDemo - -p

INFO c.a.b.n.ProcessListingDemo - /workspace/java-17-for-absolute-

beginners/chapter09/processapi/target/classes...*.jar

INFO c.a.b.n.ProcessListingDemo - -m

INFO c.a.b.n.ProcessListingDemo

- chapter.nine.processapi/com.apress.bgn.nine.ProcessListingDemo

INFO c.a.b.n.ProcessListingDemo - Command:

/Library/Java/JavaVirtualMachines/jdk-17.jdk/Contents/Home/bin/java

INFO c.a.b.n.ProcessListingDemo - PID: 58819

INFO c.a.b.n.ProcessListingDemo - -Xmx700m

INFO c.a.b.n.ProcessListingDemo - -Djava.awt.headless=true

// some output omitted

INFO c.a.b.n.ProcessListingDemo - -classpath

INFO c.a.b.n.ProcessListingDemo - /Applications/IntelliJ

IDEA.app/Contents/plugins/java/lib/jps-launcher.jar

INFO c.a.b.n.ProcessListingDemo - org.jetbrains.jps.cmdline.Launcher

INFO c.a.b.n.ProcessListingDemo - /Applications/IntelliJ

IDEA.app/Contents/lib/netty-common-4.1.52.Final...*.jar

INFO c.a.b.n.ProcessListingDemo - org.jetbrains.jps.cmdline.BuildMain

INFO c.a.b.n.ProcessListingDemo - 127.0.0.1

INFO c.a.b.n.ProcessListingDemo - 52130

INFO c.a.b.n.ProcessListingDemo - de98ca31-a7d8-4fe3-b268-44545198d08b

INFO c.a.b.n.ProcessListingDemo

- /Users/iulianacosmina/Library/Caches/JetBrains/IntelliJIdea2020.3/compile

server

INFO c.a.b.n.ProcessListingDemo - Command:

/Library/Java/JavaVirtualMachines/jdk-17.jdk/Contents/Home/bin/java

Listing 9-28 Output Produced By Running the Code in Listing 9-27

In the previous log only the IntelliJ IDEA Launcher used to run the ProcessListingDemo class and
the process spawned to run it were depicted, but the output could be much bigger. Some arguments were
skipped all together, as it is quite useless to waste pages of the book with logs that you can produce yourself.
Nevertheless, some depiction of the log format was necessary if you will never run the code yourself.

The previous code sample showed you roughly how to access native processes and print information
about them. Using the improved Java process API, new processes can be created, and commands of the
underlying operation system can be started. For example, we can create a process that prints the value of the
JAVA_HOME environment variable and capture the output to display it in the IntelliJ console, as depicted in
Listing 9-29. (This code works on macOS and Linux, for Windows the equivalent PowerShell command
should be used.)

package com.apress.bgn.nine;

// other import statements omitted

import java.util.concurrent.CompletableFuture;

import java.util.concurrent.ExecutionException;

public class NewApiProcessCreationDemo {

 private static final Logger log =

LoggerFactory.getLogger(NewApiProcessCreationDemo.class);

 public static void main(String... args) throws IOException,

InterruptedException, ExecutionException {

 ProcessBuilder processBuilder = new ProcessBuilder();

 processBuilder.command("/bin/sh", "-c", "echo Java home:

$JAVA_HOME");

 processBuilder.inheritIO();

 Process process = processBuilder.start();

 CompletableFuture<Process> future = process.onExit();

 int result = future.get().exitValue();

 log.info("Process result: " + result);

 CompletableFuture<ProcessHandle> futureHandle =

process.toHandle().onExit();

 ProcessHandle processHandle = futureHandle.get();

 log.info("Process ID: {}", processHandle.pid());

 ProcessHandle.Info info = processHandle.info();

 info.arguments().ifPresent(s -> Arrays.stream(s).forEach(a ->

log.info(" {}", a)));

 info.command().ifPresent(c -> log.info("\t Command: {}", c));

 }

}

Listing 9-29 Java Sample Code to Create a Process

New processes can be created by using instances of ProcessBuilder that receive as arguments a list
of commands and arguments for them. The class has many constructors and methods with different
signatures that can be used to create and start processes easily. The inheritIO() method is used to set

the source and destination for the subprocess standard I/O to be the same as the current process. This
means the process output is printed directly in the console, without the need of reading it using an
InputStream. The onExit() method in the Process class returns a
CompletableFuture<Process> that can be used to access the process at the end of its execution to
retrieve the exit value of the process. For a process terminating normally the value should be 0(zero). The
onExit() method in the ProcessHandle class returns a CompletableFuture<ProcessHandle>
that can be used to access the process can be used to wait for process termination, and possibly trigger
dependent actions.

When a Java program creates a process, that process becomes a child of the process that created it. To be
able to list all children processes we need to make sure they last a while, because once terminated they
obviously no longer exist. The code sample in Listing 9-30 creates three identical processes, each of them
executing three linux shell commands:

echo "start" to notify that the process has started execution
sleep 3 that pauses the process for 3 seconds
echo "done." is executed right before the parent process �inishes its execution.

Once a process is started it can no longer be controlled, so to make sure the child processes actually
�inish their execution, we’ll ask the user to press a key to decide when the current process �inishes by adding
a System.in.read(); statement.

package com.apress.bgn.nine;

// import statements omitted

public class ThreeProcessesDemo {

 private static final Logger log =

 LoggerFactory.getLogger(ThreeProcessesDemo.class);

 public static void main(String... args) {

 try {

 List<ProcessBuilder> builders = List.of(

 new ProcessBuilder("/bin/sh", "-c",

 "echo \"start...\" ; sleep 3; echo

\"done.\"").inheritIO(),

 new ProcessBuilder("/bin/sh", "-c",

 "echo \"start...\" ; sleep 3; echo

\"done.\"").inheritIO(),

 new ProcessBuilder("/bin/sh", "-c",

 "echo \"start...\" ; sleep 3; echo

\"done.\"").inheritIO()

);

 builders.parallelStream().forEach(pbs -> {

 try {

 pbs.start();

 } catch (Exception e) {

 log.error("Oops, could not start process!", e);

 }

 });

 ProcessHandle ph = ProcessHandle.current();

 ph.children().forEach(pc -> {

 log.info("Child PID: {}", pc.pid());

 pc.parent().ifPresent(parent ->

 log.info(" Parent PID: {}", parent.pid()));

 });

 System.out.println("Press any key to exit!");

 System.in.read();

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

Listing 9-30 Java Sample Code to Create Three Processes

As you can see, we have grouped the ProcessBuilders in a list and processed the instances using a
parallel stream to make sure that all processes were started almost at the same time. We printed the results
of each of them after termination, to make sure all were executed correctly. The children() method
returns a stream containing ProcessHandle instances corresponding to the processes started by the current
Java process.

The parent() method was called for each child ProcessHandle instance to obtain the
ProcessHandle corresponding to the process that created it, if there is one. When running the previous
code in the console, you should see an output similar to what is depicted in the Listing 9-31. (If you run it on
a Mac or Linux, that is. Windows will probably have no idea what is being asked to do.)

start...

start...

start...

INFO c.a.b.n.ThreeProcessesDemo - Child PID: 59368

INFO c.a.b.n.ThreeProcessesDemo - Parent PID: 59365

INFO c.a.b.n.ThreeProcessesDemo - Child PID: 59366

INFO c.a.b.n.ThreeProcessesDemo - Parent PID: 59365

INFO c.a.b.n.ThreeProcessesDemo - Child PID: 59367

INFO c.a.b.n.ThreeProcessesDemo - Parent PID: 59365

Press any key to exit!

done.

done.

done.

Listing 9-31 Output of a Java Application That Creates Three Processes

In the past, developers who needed to work with processes on a more advanced level needed to resort to
native code. The improved Java Process API provides a lot more control over running and spawned
processes, so if you ever need it, now you know it exists. A full list of the Java process API improvements
added in Java 9 can be found here: https://docs.oracle.com/javase/9/core/process-
api1.htm.

Testing
Debugging is a part of a software process named testing and involves identifying and correcting code errors.
But just avoiding technical errors is not enough, testing an application means much more than that. There is
even an organization providing very good materials for training and certi�ications for software testers. The
International Software Testing Quali�ications Board is a software testing quali�ication certi�ication
organization that operates internationally. It established a syllabus and a hierarchy of quali�ications and
guidelines for software testing.8 If you think you are more interested in software testing, then you should
look into getting an ISTQB certi�ication.

The ISTQB de�inition of testing is “the process consisting of all lifecycle activities, both static and
dynamic, concerned with planning, preparation and evaluation of software and related work products to
determine that they satisfy speci�ied requirements to demonstrate that they are �it for purpose and to detect
defects.”

The previous is a technical, academic de�inition. The de�inition I propose is “the process of verifying that
an implementation does what it is supposed to, in the amount of time it is expected to, with an acceptable
resources consumption.”

https://docs.oracle.com/javase/9/core/process-api1.htm

 Testing is an essential part of the development process and should start as early as possible, because
the effort of �ixing a defect grows exponentially with the time it takes to be discovered.9

During the development phase, aside from writing the actual solution, you can also write code to test
your solution. Those tests can be either run manually or by a build tool when you build your project. When
writing your code, aside from thinking how you can write it so that the solution solves the problem, you
should be thinking also about how to test the solution. This approach is named TDD (Test Driven
Development), a programming paradigm that states that you should think about how to test your solution
before implementing it, because if it is dif�icult to test, it will probably be dif�icult to implement, maintain in
the long run, and extend to solve related problems.

The simplest tests you can write are called unit tests , and they are very simple methods that tests small
units of functionality. If unit tests cannot be written easily, your design might be rotten. Unit tests are the
�irst line of defence against failures. If unit tests fail, the foundation of your solution is bad.

The tests that span across multiple components, testing the communication between units of
functionality and the results of their interactions against an expected results, are called integration tests .

The last type of tests a developer should write are regression tests , which are tests that are run
periodically to make sure that code that was previously tested still performs correctly after it was changed.
This type of tests is crucial for big projects where code is written by a considerable number of developers,
because sometimes dependencies among components are not obvious and code a developer wrote might
break somebody else’s code.

This section will only show you how to write unit tests using a Java framework named JUnit and describe
a few typical testing components a developer can build to set up a context for the unit tests. Thus, as my
Scottish colleagues say: Let’s get cracking!

Testing Code Location
As you probably remember, in Chapter 3 the java-bgn project structure was explained. The discussion
about tests must start with the structure of the lowest level modules of the project, the ones that contain the
source code and tests. In Figure 9-13 you can see the structure of the module containing the sources and test
code for the module used in this section.

Figure 9-13 The Maven (Gradle too) module structure

The structure depicted in the previous example can be explained as follows:

the src directory contains all code and resources of the project. The contents are split into two directories
main and test.

– the main directory contains the source code and the application con�iguration �iles, split into two
directories. The java directory contains the Java source code and the resources directory contains
con�iguration �iles, nonexecutable text �iles (that can be written according to various formats: XML, SQL,
CSV, etc), media �iles, PDFs, and so on. When the application is built and packed into a jar (or war, or

ear) only the �iles in the Java directory are taken onto account; the *.class �iles together with the
con�iguration �iles are packed.

– the test directory contains code used to test the source code in the src directory. The Java �iles are
kept under the java directory and in the resources directory contains con�iguration �iles needed to
build a test context. The classes in the test directory are part of the project and have access to the
classes declared in the main directory as described by accessors in Chapter 3. However, the contents
of the test directory are not part of the project that will be delivered to a client. They exist just to help
test the application during development. The �iles in the test/resources directory usually override
con�iguration �iles in the main/resources to provide an isolated, smaller execution context for the
test classes.

Building an Application to Test
For the examples in this section, we will build a simple application that uses an embedded Derby10 database
to store data. This will be the production database. For the test environment the database will be replaced
with various pseudo-constructions that will mimic the database behavior.

The application is quite rudimentary. An AccountService implementation takes data from the input
and uses it to manage Account instances. The Account class is a very abstract an unrealistic
implementation of a banking account. It has a holder �ield which is the account owner, an
accountNumber �ield, and an amount �ield. The AccountService implementation uses a
AccountRepo implementation to perform all related database operations with Account instances using
an implementation of DBConnection. The classes and interfaces that are making up this simple
application and relationships between them are depicted in Figure 9-14.

Figure 9-14 Simple account management application components (as shown by IntelliJ IDEA)

The implementation of these classes is not relevant for this section, but if you are curious you can �ind
the full code on the of�icial repository of this book. So let’s start testing. The easiest way would be to write a
main class and perform some account operations. However, it is useless to do that once the application is in
production, since testing new features on it comes with risks of data corruption. Also, production databases
are usually hosted on costly products, such as Oracle RDBMS (Oracle Relational Database Management
System) or Microsoft SQL Server. They are not really appropriate for development or testing. The intention is
to run tests automatically during an automated build, so in-memory or implementations that can be
instantiated are more suitable. So let’s start by testing the AccountRepoImpl.

Introducing JUnit
JUnit is undoubtedly the most-used testing framework in the Java development world. At the end of 2017,
JUnit 511 was released, which is the next generation of this framework. It comes with a new engine, is
compatible with Java 9+, and comes with a lot of lambda-based functionalities. JUnit provides annotations to

mark test methods for automated execution, annotations for initialization and destruction of a test context,
and utility methods to practically implement test methods. There are multiple JUnit annotations that you
can use, but �ive of them and a utility class represent the core of the JUnit framework and this is the best
place to start to learn testing. The following list covers each of them with a short description, to build a
general picture of how JUnit can be used to test your application:

@BeforeAll from package org.junit.jupiter.api is used on a nonprivate static method that
returns void used to initialize objects and variables to be used by all test methods in the current class.
This method will be called only once, before all test methods in the class, so test methods should not
modify these objects, because their state is shared, and it might affect the test results. Eventually, the static
�ields to be initialized by the annotated method can be declared �inal, so once initialized they can no
longer be changed. More than one method annotated with @BeforeAll can be declared in a test class,
but what would be the point?
@AfterAll from package org.junit.jupiter.api is the counterpart of @BeforeAll. It is also
used to annotate nonprivate static methods that return void, and their purpose is to destroy the context
the test methods were run in and perform cleanup actions.
@BeforeEach from package org.junit.jupiter.api is used on nonprivate, nonstatic methods that
return void, and methods annotated with it are executed before every method annotated with @Test.
These methods can be used to further customize the test context to populate objects with values that will
be used to test assertions in the test methods.
@AfterEach from package org.junit.jupiter.api is used on nonprivate, nonstatic methods that
return void, and methods annotated with it are executed after every method annotated with @Test.
@Test from package org.junit.jupiter.api is used on nonprivate, nonstatic methods that return
void, and the method annotated with it is a test method. A test class can have one or more, depending on
the class that is being tested.
Utility class org.junit.jupiter.api.Assertions that provides a set of methods that support
asserting condition in tests.

Another annotation that you might be interested to know it exists is @DisplayName. It is declared in
the same package as all the others and receives a text argument that will represent the test display name,
which will be displayed by the IDE and in the resulting reports created by the build tool. Listing 9-32 shows
a pseudo test class, so you can get an idea of how test classes look.

package com.apress.bgn.nine.pseudo;

import org.junit.jupiter.api.*;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import static org.junit.jupiter.api.Assertions.assertFalse;

import static org.junit.jupiter.api.Assertions.assertTrue;

public class PseudoTest {

 private static final Logger log =

LoggerFactory.getLogger(PseudoTest.class);

 @BeforeAll

 static void loadCtx() {

 log.info("Loading general test context.");

 }

 @BeforeEach

 void setUp(){

 log.info("Prepare single test context.");

 }

 @Test

 @DisplayName("test one")

 void testOne() {

 log.info("Executing test one.");

 assertTrue(true);

 }

 @Test

 @DisplayName("test two")

 void testTwo() {

 log.info("Executing test two.");

 assertFalse(false);

 }

 @AfterEach

 void tearDown(){

 log.info("Destroy single test context.");

 }

 @AfterAll

 static void unloadCtx(){

 log.info("UnLoading general test context.");

 }

}

Listing 9-32 Pseudo Test Class Using JUnit Annotations

Keeping in mind the information that you now have about these annotations, when running this class we
expect the log messages that each method prints to be in the exact order that we have de�ined, because the
methods have been strategically placed in the previous code so the JUnit order of execution is respected. The
only thing that cannot be guaranteed is the order the tests are executed in. Also parallel execution of tests is
possible by adding a �ile named junit-platform.properties under test\resources that contains the
following properties:

junit.jupiter.execution.parallel.enabled = true

junit.jupiter.execution.parallel.mode.default = concurrent

junit.jupiter.execution.parallel.mode.classes.default = same_thread

The previous set of properties represents the con�iguration parameters to execute top-level classes
sequentially, but their methods in parallel. More con�iguration examples are provided in the of�icial JUnit
documentation.

Most Java smart editors like IntelliJ IDEA provide you with an option to do so when you click right on the
class. In Figure 9-15 you can see the menu option to execute a test class in IntelliJ IDEA.

Figure 9-15 Menu option to execute a test class in IntelliJ IDEA

After right-clicking on the class, from the menu that appears select Run PseudoTest and the test class is
executed. A launcher is created so you can launch it from the typical launch menu as well. Test classes can be
executed in debug and break points used too. When executing the previous class, even if the test methods
are run in parallel the output is consistent with the order of the methods matching the annotation
speci�ications mentioned previously. To make sure that test methods are executed in parallel, the logger was
con�igured to print the thread id as well. A sample output is depicted in Listing 9-33.

[1-worker-1] INFO c.a.b.n.p.PseudoTest - Loading general test context.

Jun 12, 2021 1:44:13 PM

org.junit.jupiter.engine.config.EnumConfigurationParameterConverter get

INFO: Using parallel execution mode 'CONCURRENT' set via the

'junit.jupiter.execution.parallel.mode.default' configuration parameter.

[1-worker-1] INFO c.a.b.n.p.PseudoTest - Prepare single test context.

[1-worker-2] INFO c.a.b.n.p.PseudoTest - Prepare single test context.

[1-worker-1] INFO c.a.b.n.p.PseudoTest - Executing test two.

[1-worker-2] INFO c.a.b.n.p.PseudoTest - Executing test one.

[1-worker-2] INFO c.a.b.n.p.PseudoTest - Destroy single test context.

[1-worker-1] INFO c.a.b.n.p.PseudoTest - Destroy single test context.

[1-worker-1] INFO c.a.b.n.p.PseudoTest - UnLoading general test context.

Listing 9-33 Output of the Execution of PseudoTest

Notice how there is a log message about parallel execution of tests method being con�igured. The
testOne() method contains this statement: assertTrue(true); which is put there to show you how
assertion methods look like. The true value is replaced with a condition in a real test. The same goes for the
assertFalse(false); assertion in method textTwo(). That’s about all the space we can dedicate to
JUnit in this book. My recommendation is to look more into it, because a developer can write code, but a
good developer knows how to make sure it works as well.

Using Fakes

A Fake object is an object that has working implementations, but not the same as the production object. The
code written to implement such an object has simpli�ied functionality of the one deployed in production.

To test the AccountRepoImpl class, we have to replace the DerbyDBConnection with a
FakeDBConnection that is not backed up by a database but by something more simple, more accessible
like a Map<?,?>. The DerbyDBConnection uses a java.sql.Connection and other classes in that
package to perform data operations on the Derby database.

The FakeDBConnection will implement the DBConnection interface so that it can be passed to a
AccountRepoImpl and all its methods will be called on it.

The rule of thumb when writing tests and test supporting classes is to put them in the same packages
with the objects tested or replaced, but in the test/java directory. This is because test classes must access
the classes being tested, without extra con�igurations needed in the module-info.java. Supporting
classes to test the application classes using fakes are declared in the com.apress.bgn.nine.fake
package.

Another rule of thumb when writing tests is to write a method to test the correct outcome of the method
being tested, and one to test the incorrect behavior. In unexpected cases with unexpected data your
application will behave in unexpected ways, so although this seems paradoxical, you have to expect the
unexpected and write tests for it.

The AccountRepoImpl class implements the basic methods to persist or delete an Account instance
to/from the database. The implementation is depicted in Listing 9-34.

package com.apress.bgn.nine.repo;

import com.apress.bgn.nine.Account;

import com.apress.bgn.nine.db.DbConnection;

import java.util.List;

import java.util.Optional;

public class AccountRepoImpl implements AccountRepo {

 private DbConnection conn;

 public AccountRepoImpl(DbConnection conn) {

 this.conn = conn;

 }

 @Override

 public Account save(Account account) {

 Account dbAcc = conn.findByHolder(account.getHolder());

 if(dbAcc == null) {

 return conn.insert(account);

 }

 return conn.update(account);

 }

 @Override

 public Optional<Account> findOne(String holder) {

 Account acc = conn.findByHolder(holder);

 if(acc != null) {

 return Optional.of(acc);

 }

 return Optional.empty();

 }

 @Override

 public List<Account> findAll() {

 return conn.findAll();

 }

 @Override

 public int deleteByHolder(String holder) {

 Account acc = conn.findByHolder(holder);

 conn.delete(holder);

 if(acc != null) {

 return 0;

 }

 return 1;

 }

}

Listing 9-34 The AccountRepoImpl Implementation

The deleteByHolder(..) method in the AccountRepoImpl is used to delete an account. If the
entry is present, it deletes it and returns 0, otherwise it returns 1. The deleteByHolder(..) method is
depicted in the next code snippet.

To test this class, we need to provide a DbConnection implementation that simulates a connection to a
database. This is where the previously mentioned FakeDBConnection comes in. The code is shown in
Listing 9-35.

package com.apress.bgn.nine.fake.db;

import com.apress.bgn.nine.Account;

import com.apress.bgn.nine.db.DBException;

import com.apress.bgn.nine.db.DbConnection;

import java.util.*;

public class FakeDBConnection implements DbConnection {

 // pseudo-database {@code Map<holder, Account>}

 Map<String, Account> database = new HashMap<>();

 @Override

 public void connect() {

 // no implementation needed

 }

 @Override

 public Account insert(Account account) {

 if (database.containsKey(account.getHolder())) {

 throw new DBException("Could not insert " + account);

 }

 database.put(account.getHolder(), account);

 return account;

 }

 @Override

 public Account findByHolder(String holder) {

 return database.get(holder);

 }

 @Override

 public List<Account> findAll() {

 List<Account> result = new ArrayList<>();

 result.addAll(database.values());

 return result;

 }

 @Override

 public Account update(Account account) {

 if (!database.containsKey(account.getHolder())) {

 throw new DBException("Could not find account for " +

account.getHolder());

 }

 database.put(account.getHolder(), account);

 return account;

 }

 @Override

 public void delete(String holder) {

 database.remove(holder);

 }

 @Override

 public void disconnect() {

 // no implementation needed

 }

}

Listing 9-35 The FakeDBConnection Implementation

The FakeDBConnection behaves exactly like a connection object that can be used to save entries to a
database, search for them, or delete them, only instead of a database it is backed up by a Map<String,
Account>. The map key will be the holder’s name, because in our database the holder name is used and an
unique identi�ier for an Account entry in the table. Now that we have the fake object, we can test that our
AccountRepoImpl behaves as expected. Because of practical reasons only one method will be tested in
this section, but the full code is available on the of�icial GitHub repo for the book.

Listing 9-36 shows a test class that test methods that verify the behavior of the findOne(..) method .
It contains a positive test method when there is an entry matching the criteria and a negative test method
when there isn’t.

package com.apress.bgn.nine;

// other import statements omitted

import static org.junit.jupiter.api.Assertions.*;

public class FakeAccountRepoTest {

 private static final Logger log =

LoggerFactory.getLogger(FakeAccountRepoTest.class);

 private static DbConnection conn;

 private AccountRepo repo;

 @BeforeAll

 static void prepare() {

 conn = new FakeDBConnection();

 }

 @BeforeEach

 public void setUp(){

 repo = new AccountRepoImpl(conn);

 // inserting an entry so we can test update/findOne

 repo.save(new Account("Pedala", 200, "2345"));

 }

 @Test

 public void testFindOneExisting() {

 Optional<Account> expected = repo.findOne("Pedala");

 assertTrue(expected.isPresent());

 }

 @Test

 public void testFindOneNonExisting() {

 Optional<Account> expected = repo.findOne("Dorel");

 assertFalse(expected.isPresent());

 }

 @AfterEach

 void tearDown(){

 // delete the entry

 repo.deleteByHolder("Pedala");

 }

 @AfterAll

 public static void cleanUp(){

 conn = null;

 log.info("All done!");

 }

}

Listing 9-36 The FakeAccountRepoTest Test Class

Notice how we are creating exactly one entry that is added to our fake database.
Now that we are sure the repository class does its job properly, the next one to test is the

AccountServiceImpl. To test this class, we will look into a different approach. Fakes are useful, but
writing one for a class with complex functionality can be quite cost-inef�icient in regards to development
time. So what are the alternatives? There are a few. In the next section, we’ll look at stubs.

Using Stubs
A Stub is an object that holds prede�ined data and uses it to answer test calls. An instance of
AccountServiceImpl uses an instance of AccountRepo to retrieve data from the database or save data
to a database. When writing unit tests for this class, each test method must cover the functionality from a
method in service class so that we can write a stub class to simulate the behavior of AccountRepo. For the
AccountServiceImpl instance to be able to use it, the stub must implement AccountRepo. In this
section the tests will cover the method createAccount(..), because this method can fail in many ways.
Thus, more than one test method can be written for it. Listing 9-37 shows the createAccount(..)
method .

package com.apress.bgn.nine.service;

// import section omitted

public class AccountServiceImpl implements AccountService {

 AccountRepo repo;

 public AccountServiceImpl(AccountRepo repo) {

 this.repo = repo;

 }

 @Override

 public Account createAccount(String holder, String accountNumber, String

amount) {

 int intAmount;

 try {

 intAmount = Integer.parseInt(amount);

 } catch (NumberFormatException nfe) {

 throw new InvalidDataException("Could not create account with

invalid amount!");

 }

 if (accountNumber == null || accountNumber.isEmpty() ||

accountNumber.length() < 5 || intAmount < 0) {

 throw new InvalidDataException("Could not create account with

invalid account number or invalid amount!");

 }

 Optional<Account> existing = repo.findOne(holder);

 if (existing.isPresent()) {

 throw new AccountCreationException("Account already exists for

holder " + holder);

 }

 Account acc = new Account(holder, intAmount, accountNumber);

 return repo.save(acc);

 }

 // other code omitted

}

Listing 9-37 The AccountServiceImpl#createAccount(..) Method

The createAccount(..) method takes as parameters the holder name, the number of the account to
be created, and the initial amount. All of them are provided as String instances intentionally, so that the
method body contains a little bit of logic that would require serious testing. Let’s analyze the behavior of the
previous method and make a list with all possible returned values and returned exceptions:

if the amount is not a number, an InvalidDataException is thrown. (The
InvalidDataException is a custom type of exception created soeci�ically for this project, which is not
relevant at the moment.)
if the accountNumber argument is empty, an InvalidDataException is thrown.
if the accountNumber argument is null, an InvalidDataException is thrown.
if the accountNumber argument has less than 5 characters, an InvalidDataException is thrown.
if the amount argument converted to a number is negative, an InvalidDataException is thrown.
if the account for the holder argument already exists, an AccountCreationException is thrown.
if all the inputs are valid and there is no account for the holder argument, an Account instance is created,
saved to the database and the result is returned.

If we were to be really obsessive about testing, we would have to write a test scenario for all those cases.
In the software world there is something called test coverage, which is a process that determines whether
test cases cover application code and how much of it. The result is a percentage value, and companies
usually de�ine a test coverage percentage12 that represents a warranty of quality for the application. Before
showing the test methods for the createAccount(..) method , take a look at Listing 9-38 that shows the
repo stub code.

package com.apress.bgn.nine.service.stub;

// other import statements omitted

import com.apress.bgn.nine.repo.AccountRepo;

public class AccountRepoStub implements AccountRepo {

 private Integer option = 0;

 public synchronized void set(int val) {

 option = val;

 }

 @Override

 public Account save(Account account) {

 return account;

 }

 @Override

 public Optional<Account> findOne(String holder) {

 if (option == 0) {

 return Optional.of(new Account(holder, 100, "22446677"));

 }

 return Optional.empty();

 }

 @Override

 public List<Account> findAll() {

 return List.of(new Account("sample", 100, "22446677"));

 }

 @Override

 public int deleteByHolder(String holder) {

 return option;

 }

}

Listing 9-38 The AccountRepoStub Class

The option �ield can be used to change behavior of the stub, to cover more test cases. As we have one
stub repository, this means tests might fail when run in parallel, but for this example with this simple stub, it
works.

There are two ways to write test using JUnit, depending on the assert*(..) statements used. Listing
9-39 shows two negative test methods that validate the behavior when an invalid amount is provided as
argument.

package com.apress.bgn.nine.service;

import com.apress.bgn.nine.Account;

import com.apress.bgn.nine.service.stub.AccountRepoStub;

import org.junit.jupiter.api.*;

import static org.junit.jupiter.api.Assertions.*;

public class AccountServiceTest {

 private static AccountRepoStub repo;

 private AccountService service;

 @BeforeAll

 static void prepare() {

 repo = new AccountRepoStub();

 }

 @BeforeEach

 void setUp() {

 service = new AccountServiceImpl(repo);

 }

 @Test

 void testNonNumericAmountVersionOne() {

 assertThrows(InvalidDataException.class,

 () -> {

 service.createAccount("Gigi", "223311", "2I00");

 });

 }

 @Test

 void testNonNumericAmountVersionTwo() {

 InvalidDataException expected = assertThrows(

 InvalidDataException.class, () -> {

 service.createAccount("Gigi", "223311", "2I00");

 }

);

 assertEquals("Could not create account with invalid amount!",

expected.getMessage());

 }

 @AfterEach

 void tearDown() {

 repo.set(0);

 }

 @AfterAll

 static void destroy() {

 repo = null;

 }

}

Listing 9-39 The AccountServiceTest Unit Test Class Using a Stub Repo

The testNonNumericAmountVersionOne() method makes use of assertThrows(..) that
receives two parameters: the type of exception expected to be thrown when the second parameter of type
Executable is executed. Executable is functional interface de�ined in the
org.junit.jupiter.api.function, which can be used in a lambda expression to get the compact test
that you see in Listing 9-39.

The testNonNumericAmountVersionTwo() method saves the result of the assertThrows(..)
call, which allows for the message of the exception to be tested as well, to make sure that the execution �low
worked exactly as expected.

Similar methods can be written to test all other service methods. The AccountServiceTest class
hosted on the repository for this book depicts a few other testing methods. Feel free to add your own to
cover situations that were missed.

The last test technique covered in this chapter: writing tests using mocks.

Using Mocks
Mocks are objects that register calls they receive. During execution of a test, using assert utility methods, the
assumption that all expected actions were performed on mocks are tested. Thankfully, code for mocks does
not have to be written by the developer, there are three well known libraries that provide the type of classes

needed to test using mocks: Mockito, JMock, and EasyMock.13 Also, if you are ever in need to mock static
methods—the most common reason being bad design—there is PowerMock.14

Using mocks, you can jump directly to writing the tests. Listing 9-40 shows two tests for the
createAccount(..) method that focus on the repository class actually calling its methods, because the
repository class is the one being replaced with a mock.

package com.apress.bgn.nine.mock;

// other import statements omitted

import org.junit.jupiter.api.extension.ExtendWith;

import org.mockito.Mock;

import org.mockito.junit.jupiter.MockitoExtension;

import static org.junit.jupiter.api.Assertions.*;

import static org.mockito.ArgumentMatchers.any;

import static org.mockito.Mockito.when;

@ExtendWith(MockitoExtension.class)

public class AccountServiceTest {

 private AccountService service;

 @Mock

 private AccountRepo mockRepo;

 @BeforeEach

 public void checkMocks() {

 assertNotNull(mockRepo);

 service = new AccountServiceImpl(mockRepo);

 }

 @Test

 public void testCreateAccount() {

 Account expected = new Account("Gigi", 2100, "223311");

 when(mockRepo.findOne("Gigi")).thenReturn(Optional.empty());

 when(mockRepo.save(any(Account.class))).thenReturn(expected);

 Account result = service.createAccount("Gigi", "223311", "2100");

 assertEquals(expected, result);

 }

 @Test

 public void testCreateAccountAlreadyExists() {

 Account expected = new Account("Gigi", 2100, "223311");

 when(mockRepo.findOne("Gigi")).thenReturn(Optional.of(expected));

 assertThrows(AccountCreationException.class,

 () -> service.createAccount("Gigi", "223311", "2100"));

 }

}

Listing 9-40 The AccountServiceTest Unit Test Class Using a Mock Repo

The tests are quite self-explanatory, and the Mockito utility methods names make it easy to understand
what is actually happening during a test execution. Wait, you might ask, how are the mocks created and
injected? Who does that? The @ExtendWith(MockitoExtension.class) is necessary for JUnit 5 tests
to support Mockito annotations. Without it, annotations like @Mock have no effect on the code. The @Mock
annotation is to be used on references to mocks created by Mockito. The preferred way to work with

mocks is to specify a reference of an interface type that is implemented by the real object type and the mock
that will be created for the test scenario. But @Mock can be placed on a concrete type reference as well, and
the created mock will be a subclass of that class. The @InjectMocks annotation is used on the object to be
tested, so that Mockito knows to create this object and inject mocks instead of the dependencies. This is all
you need to know to start using Mockito mocks in your test. Declaring the objects to be replaced with mocks
and the object to be injected in is the only setup a class containing unit tests using mocks needs.

The body of test methods using mocks have a typical structure as well. The �irst lines must declare
objects and variables passed as arguments to the method called on the object being tested or passed as
arguments to Mockito utility methods that declare what mocks take as arguments and what they return. The
next lines establish the behavior of the mock when its methods are called by the object to be tested.

The following two lines depict this for the findOne(..) method. The �irst line creates an account
object. The second line de�ines the behavior of the mock. When mockRepo.findOne("Gigi") will be
called, then the previously created account instance will be returned wrapped in an Optional<T>
instance.

Account expected = new Account("Gigi", 2100, "223311");

when(mockRepo.findOne("Gigi")).thenReturn(Optional.of(expected));

There are many other libraries to make writing tests as effortlessly as possible for developers, and big
frameworks like Spring provide their own testing library to help developers write test for application using
this framework. Build tools like Ant, Maven, and Gradle can be used to automatically run the tests when the
project is built and generate useful reports related to the failures.

Using Maven, the project can be build by calling mvn clean install in the console. All test classes
declared in the test module, are picked up automatically if they are named *Test.java. When writing
tests and not changing application code, you can just run the tests only by calling mvn test. This is a
con�iguration that can be changed by con�iguring the Maven Sure�ire Testing Plug-in con�igured in the
pom.xml �ile.

In a Maven project tests are run by the maven-surefire-plugin. The Maven test results are saved in
txt and XML format, and the �iles are located under target/surefire-reports directory. The test
results can be grouped into an HTML report by adding the maven-surefire-report-plugin to the
project con�iguration and con�iguring it to run during the test phase. This is practical, since it causes the
report to be generated by running mvn clean install or mvn test. The generated report is readable,
but without being part of the site generated for the project there is no css styling. The report is represented
by a �ile named surefire-report.html located under target/site directory.

For the following example, a test failure was introduced intentionally, and the build was modi�ied to
record the failure without failing the full build. Otherwise, the report is not generated. This is all done via
Maven con�igurations that you can take a peek at in the code for this book. You can see the generated report
in Figure 9-16.

Figure 9-16 The Maven test report with a test failure and no styling

It doesn’t look pretty, but it is readable. Upon �ixing the test the report becomes simpler, and the last two
sections are not generated. When included into the site generated for this project using the maven-site-
plugin (used in the next section of this chapter) the generated report looks a lot better, as depicted in
Figure 9-17.

Figure 9-17 The Maven test report with no test failures and typical Maven generated site styling

 The previous edition of this book used Gradle to build this project. Because of various
incompatibilities with newer versions of Java and the dif�iculty of con�iguration, it was dropped in favor
of Maven, which is widely used and pretty stable. Unfortunately, generating test reports requires multiple
Maven plug-ins and the reports are not as pretty.

As a conclusion of this section remember this: no matter how good a development team is, without a
great testing team, the resulting application might actually be far away from an acceptable quality standard.
So if you ever come across companies that do not have a dedicated testing team, or a company culture that
compromises in techniques such as code review and writing tests, think twice before accepting that job.

Documenting
In the software world there is a joke about documentation that might not be to everybody’s liking, but it is
worth a mention.

 Documentation is like sex. When it’s good, is really, really good. And when it’s bad, it’s still better than
nothing.

A common-sense rule and best practice of programming is to write code that is self-explanatory, to avoid
writing documentation. Basically, if you need to write too much documentation, you’re doing it wrong. There
are a lot of things you can do to avoid writing documentation, such as using meaningful names for classes
and variables, respecting the language code conventions, and many others. However, when you are building
a set of classes that will be used by other developers, you need to provide a little documentation for the main
APIs. If your solution requires a very complicated algorithm to be written you might want to add comments

about it here and there, although in this case, proper technical documentation with schemas and diagrams
should be written too.

In Chapter 3 the different types of comments were mentioned, and a promise was made to come back
with more detail regarding Javadoc comments. The Javadoc block comments, also named the
Documentation comments, can be found associated with a public class, interface, method body, public
�ield, and sometimes even protected or private, if really necessary. The Javadoc comments contain special
tags that link documented elements together or mark the different type of information. The Javadoc
comments and their associated code can be processed by Javadoc tools, extracted, and wrapped together
into a HTML site, which is called the Javadoc API of the project. The Maven con�iguration of this project
declares a few reporting plug-ins and the previously mentioned maven-site-plugin that is con�igured
to wrap together all reports into a static site for the project that can be found under target/site.

 The project site is generated by executing mvn site.

 As expected, it is dif�icult for teams developing and maintaining Maven plug-ins to keep up with the
Oracle JDK release schedule. While setting up the con�iguration for this module several bugs were
noticed.15 It did not seem to affect the success of the build, or its result too much. Hopefully, but the time
this book is release there will be no warning and errors messages when running this build.

Smart editors can download and access documentation of a project and display it when the developer
tries to write code using the documented components, so good code documentation considerably increases
the speed of the development process. Let’s start with a few examples of Javadoc comments, to explain the
most important tags used.

Whenever we create a class or interface, we should add Javadoc comments to explain their purpose, to
add the version of the application when they were added, and eventually link some existing resources. At the
beginning of this chapter we mentioned the IntSorter hierarchy , a hierarchy of classes implementing the
IntSorter interface that provide implementations of different sorting algorithms. When these classes are
used by other developers, one of them might want to add a customised algorithm to our hierarchy. A little
information about the IntSorter interface would help them a lot in designing a proper solution. List 9-41
shows a Javadoc comment added to the IntSorter interface.

/**

 * Interface {@code IntSorter} is an interface that needs to be implemented

 * by classes that provide a method to sort an array of {@code int} values.

<p>

 *

 * {@code int[]} was chosen as a type because this type

 * of values are always sortable. ({@link Comparable})

 *

 * @author Iuliana Cosmina

 * @since 1.0

 */

public interface IntSorter {

 // interface body omitted

}

Listing 9-41 The Documentation Comment on the IntSorter Interface

In the Javadoc comments, HTML tags can be used to format information. In the previous code a <p>
element was used to make sure the comment will be made of multiple paragraphs. The @author tag was
introduced in JDK 1.0 and it is useful when the development team is quite big, because if you end up working
with somebody else’s code, you know who to look for if issues appear. The @since tag is used to provide
the version of the application when this interface was added. For an application that has had a long
development and release cycle, this tag can be used to mark elements (methods, classes, �ields, etc.) of a

speci�ic version so that a developer using the codebase of your application knows when elements were
added, and in case of a rollback to a previous version will know where in his application compile-time errors
will appear.

The best example here is the Java of�icial Javadoc; let’s take the String class. It was introduced in Java
version 1.0, but more constructors and methods were added to it with every Java version being released.
Each of them is marked with the speci�ic versions. Listing 9-42 depicts code snippets and documentation
comments that prove the previous af�irmation.

package java.lang;

// import section omitted

/**

 * ...

 * @since 1.0

 */

public final class String

 implements java.io.Serializable, Comparable<String>, CharSequence,

 Constable, ConstantDesc {

 // some code omitted

 /**

 * ...

 * @since 1.1

 */

 public String(byte[] bytes, int offset, int length, String charsetName)

{

 // method body omitted

 }

 /**

 * ...

 * @since 1.4

 */

 public boolean contentEquals(StringBuffer sb) {

 // method body omitted

 }

 /**

 * ...

 * @since 1.5

 */

 public String(int[] codePoints, int offset, int count) {

 // method body omitted

 }

 /**

 * ...

 * @since 1.6

 */

 public String(byte[] bytes, int offset, int length, Charset charset) {

 // method body omitted

 }

 /**

 * ...

 * @since 1.8

 */

 public static String join(CharSequence delimiter, CharSequence...

elements) {

 // method body omitted

 }

 /**

 * ...

 * @since 9

 */

 @Override

 public IntStream codePoints() {

 // method body omitted

 }

 /**

 * ...

 * @since 11

 */

 public String strip() {

 // method body omitted

 }

 /**

 * ...

 * @since 12

 */

 public String indent(int n) {

 // method body omitted

 }

 /**

 * ...

 * @since 15

 */

 public String stripIndent() {

 // method body omitted

 }

}

Listing 9-42 The Documentation Comments in the String Class

In the IntSorter example you might have noticed the @code tag. This tag was introduced in Java 1.5
version and is used to display text in code form, using a special font and escaping symbols that might break
the HTML syntax.(ex: < or >).

The @link tag was added in Java 1.2 and is used to insert a navigable link to relevant documentation.
Listing 9-43 shows an even better documented version of the IntSorter interface, which contains

documentation comments for the methods so that developers implementing it know how its methods
should be used.

/**

 * Interface {@code IntSorter} is an interface that needs to be implemented

 * by classes that provide a method to sort an array of {@code int} values.

<p>

 *

 * {@code int[]} was chosen as a type because this type

 * of values are always sortable. ({@link Comparable})

 *

 * @author Iuliana Cosmina

 * @since 1.0

 */

public interface IntSorter {

 /**

 * Sorts {@code arr}

 *

 * @param arr int array to be sorted

 * @param low lower limit of the interval to be sorted

 * @param high higher limit of the interval to be sorted

 */

 void sort(int[] arr, int low, int high);

 /**

 * Implement this method to provide a sorting solution that does not

require pivots.

 * @deprecated As of version 0.1, because the

 * {@link #sort(int[], int, int) ()} should be used instead.

<p>

 * To be removed in version 3.0.

 * @param arr int array to be sorted

 */

 @Deprecated (since= "0.1", forRemoval = true)

 default void sort(int[] arr) {

 System.out.println("Do not use this! This is deprecated!!");

 }

}

Listing 9-43 The Documentation Comments for Method in the IntSorter Interface

The IntelliJ IDEA editor (and other smart editors) can generate small pieces of Javadoc for you. Once you
have declared a class or method body that you want to document, type /** and press <Enter>. The
generated block of comment contains entries for everything that can be inferred from the component’s
declaration. The following list describes the most common:

one or more @param tags together with the parameter names. All is left for the developer to do is to add
extra documentation to explain their purpose.
if the method returns a value of a type different than void a @return tag is generated. Documentation
must be provided by the developer to explain what the result represents and if there are special cases
when a certain value is returned.
if the methods declare an exception to be thrown, a @throws tag is generated together with the exception
type, and the developer’s job is to explain when and why is that type of exception thrown.

Listing 9-44 depicts a snippet from the Optional<T> class containing the filter(..) method and
its documentation comment.

/**

 * ...

 * @param predicate the predicate to apply to a value, if present

 * @return an {@code Optional} describing the value of this

 * {@code Optional}, if a value is present and the value matches the

 * given predicate, otherwise an empty {@code Optional}

 * @throws NullPointerException if the predicate is {@code null}

 */

public Optional<T> filter(Predicate<? super T> predicate) {

 Objects.requireNonNull(predicate);

 if (!isPresent()) {

 return this;

 } else {

 return predicate.test(value) ? this : empty();

 }

}

Listing 9-44 The Documentation Comments for Optional<T>#filter(..) Method

The @link to can be used to create a documentation link to a class, or a method in that class or
interface, a method documentation section, a �ield, or even an external web page. Listing 9-45 depicts a class
implementing IntSorter. Its documentation comment contains a link to the abstract method in the
IntSorter interface .

package com.apress.bgn.nine.algs;

/**

 * The {@code InsertionSort} class contains a single method that is a

concrete implementation of {@link IntSorter#sort(int[])}.<p>

 * Instances of this class can be used to sort an {@code int[] } array using

the insertion-sort algorithm.

 *

 * @author Iuliana Cosmina

 * since 1.0

 * @see IntSorter

 */

public class InsertionSort implements IntSorter {

 // class body omitted

}

Listing 9-45 The Documentation Comments for the InsertionSort Class

The @see tag is a simple alternative to @link that is supposed to direct developer’s attention to
documentation speci�ic to the element this tag references. The @deprecated tag is used to add a text
explaining the reasons of deprecation, version when the component is meant to be removed, and what to
use instead. Javadoc generation tools will take the text for this tag, use italic font for its display, and add it to
the main description of the component (class, �ield, method, etc). Beside this tag, the @Deprecated
annotation was introduced in Java 1.5. Annotating a component with it should discourage developers from
using it. The advantage of this annotaton is that compilers pick it up and issues warnings when a deprecated
component is used or overridden in nondeprecated code. This annotation can be used on any Java language
component, including modules.

Smart Java IDEs, like IntelliJ IDEA, are aware of the @deprecated tag and the @Deprecated
annotation and show deprecated components in strikethrough format to warn the developer not to use
them. The Maven maven-compiler-plugin responsible with compiling Java source code provides a
con�iguration option to show or hide deprecation warnings. All these are depicted in Figure 9-18.

Figure 9-18 IntelliJ IDEA recognizes the @deprecated tag. Maven build is con�igured to show deprecation warnings

With this, we have covered the most-used tags when writing Javadoc comments. If you want to check out
the complete list you can �ind it here:
https://www.oracle.com/java/technologies/javase/javadoc-

tool.html#javadocdocuments. Javadoc documentation is also a wide subject that could provide
material for an entire book. We are just scratching the surface in this section and covering the basics so that
you have a good understanding of it.

 The Maven plug-in con�iguration for generating the site for a project is an advanced subject, not
suitable for this book. However, Maven plug-ins have been mentioned by name, and some comments have
been added in the pom.xml �iles to explaining their purpose and their con�iguration, if you are curious
about these details.

To generate the HTML site for the logging-jul module, open the Maven project view and navigate to
Chapter 09: Logging with SLF4J ➤ Lifecycle node and under it, we will �ind the site phase, as depicted in
Figure 9-19.

https://www.oracle.com/java/technologies/javase/javadoc-tool.html%2523javadocdocuments

Figure 9-19 The Maven site phase and the result for the logging-jul module

Double-clicking this in the IDE is the same as executing mvn site in the console. It triggers the
execution of the Maven site generation phase and all the phases it depends on, and the result of the build is a
directory named site, located under the target directory. It contains a static site and its starting page is
named index.html. The site is quite simple, since a default con�iguration was used.

Right-click on that �ile and from the context sensitive menu that appears select Open in Browser and
select your preferred browser.

The main page of the project depicts information from the pom.xml such as project name, description,
and so on. On the left side of the page there is a menu that contains a few entries one of them named
Project Reports. Expand this menu item and a list of items is shown one of them named Javadoc.
Click on that directs you to the project Javadoc page. If you think the page resembles the JDK of�icial Javadoc
page, you are not imagining it; the same Doclet API was used to generate that of�icial one as well. The project
menu and the Javadoc main page are depicted in Figure 9-20.

Figure 9-20 The Maven project site and the main Javadoc site for the logging-slf4j module

The documentation is not particularly rich, but it is usable.
It was previously mentioned that Javadoc documentation, when present, is picked up by IntelliJ IDEA and

other smart editors and depicted on the spot, while the developer uses the documented components in the
code. Smarter editors, when selecting a class, method name, interface method, and so on, provide some kind
of combination of keys that include F1 that the developer must press so that the documentation is depicted
in a pop-up window. In IntelliJ IDEA, just click an element and press F1 and the Javadoc documentation is
shown in a pop-up window, formatted quite nicely, as depicted in Figure 9-21.

Figure 9-21 Javadoc information depicted in IntelliJ IDEA

You can view Javadoc information in a smart editor for any dependency of your project (including JDK
classes) as long as the code is open source, and the module exports the appropriate packages.

In Java 9 the Doclet API for generating Javadoc received an upgrade and a facelift. Before Java 9,
developers complained about the performance issues of the old version, the cryptic API, the lack of support,
and the shallowness of it overall. In Java 9 most of the problems were tackled down and resolved. The

1

2

3

4

5

6

7

detailed description and list of improvements can be found here:
http://openjdk.java.net/jeps/221.

Documentation is really valuable, and can make development practical and pleasant when it is really
good. So when writing code, document it as you would expect the dependencies of your project to be. You
might probably have heard of the expression RTFM, which is an abbreviation for Read The F*ing Manual!
This expression is used quite a lot in software by experienced developers when working with newbie
developers. Problem is, what should you do when there is no manual? Most companies on a deadline might
have the tendency to allocate little or no time to documenting a project, so this section was added to this
book to emphasize the importance of good documentation in software development, and to teach you how
to write your documentation while you write your code, because you might not have time to do it afterward.

Summary
This chapter has covered important development tools and techniques, the classes in JDK that provide
support for them, and important Java libraries and frameworks that you will most likely end up working
with that could make your development job practical and pleasant. A complete list of topics is in the
following list, and hopefully after reading this chapter you have a good point to start in using any of them.

How to con�igure and use logging in a Java application.
How to log messages in the console.
How to log messages to a �ile.
How to use Java Logging.
What a logging facade is and why it is recommended to be used.
Con�igure and use SLF4J with Logback.
How to program using assertions.
How to debug step by step using IntelliJ IDEA.
How to monitor and inspect JVM statistics while an application is running using various JDK tools like:
jps, jcmd, jconsole and jmc.
How to use the Process API to monitor and create processes.
How to test an application using JUnit.
How to write tests using fakes.
How to write tests using stubs.
How to write tests using mocks.
How to document a Java application and generate documentation in HTML format using Maven.

Footnotes
You can read more about XML at Wikipedia, “XML,” https://en.wikipedia.org/wiki/XML, accessed October 15, 2021.

See the of�icial site at SLF4j, https://www.slf4j.org, accessed October 15, 2021.

The API describes the publicly available components of a library: interfaces, classes, methods, and so on.

See the logback of�icial site at Logback, https://logback.qos.ch, accessed October 15, 2021.

See the Log4j of�icial site at LOG4J, https://logging.apache.org/log4j, accessed October 15, 2021.

See the of�icial MuCommander site at MuCommander, http://www.mucommander.com, accessed October 15, 2021.

If you have an Oracle JDK subscription and want to learn more about using JMC, Oracle provides very good resources for that at Oracle, “JDK

Mission Control,” https://www.oracle.com/java/technologies/jdk-mission-control.html, accessed October 15, 2021.

http://openjdk.java.net/jeps/221
https://en.wikipedia.org/wiki/XML
https://www.slf4j.org/
https://logback.qos.ch/
https://logging.apache.org/log4j
http://www.mucommander.com/
https://www.oracle.com/java/technologies/jdk-mission-control.html

8

9

10

11

12

13

14

15

The ISTQB certi�ication path can be found at ISTQB, “Why ISTQB Certi�ication?,” https://www.istqb.org/certification-path-

root/why-istqb-certification.html, accessed October 15, 2021.

See Robert Martin’s book Clean Code (City: Publisher, year), Chapter 9.

If you are interested in �inding out more about the Derby database, see Apache Derby, https://db.apache.org/derby, accessed

October 15, 2021.

See the of�icial JUnit 5 site at https://junit.org/junit5, accessed October 15, 2021.

A good read about the subject by Martin Fowler, one of the most renown Java gurus of this generation, can be found at his website, “Test

Coverage,” https://martinfowler.com/bliki/TestCoverage.html, accessed October 15, 2021.

See the of�icial sites for these libraries at Mockito, https://site.mockito.org/; JMock, https://jmock.org/; and EasyMock,

https://easymock.org/, all accessed October 15, 2021.

See the of�icial site for PowerMock at https://powermock.github.io/, accessed October 15, 2021.

For example, you might see the message mentioned at Apache, “JDK 16+: Error Fetching Link,”

https://issues.apache.org/jira/browse/MJAVADOC-680, accessed October 15, 2021.

https://www.istqb.org/certification-path-root/why-istqb-certification.html
https://db.apache.org/derby
https://junit.org/junit5
https://martinfowler.com/bliki/TestCoverage.html
https://site.mockito.org/
https://jmock.org/
https://easymock.org/
https://powermock.github.io/
https://issues.apache.org/jira/browse/MJAVADOC-680

(1)

© Iuliana Cosmina 2022
I. Cosmina, Java 17 for Absolute Beginners
https://doi.org/10.1007/978-1-4842-7080-6_10

10. Making Your Application Interactive

Iuliana Cosmina1

Edinburgh, UK

So far in the book, input for our Java programs data was provided via arrays or variables that were
initialized inside the code or via program arguments. In real life, however, most applications require
interaction with the user. The user can be provided access by entering a username and a password, and the
user is sometimes required to type in details to con�irm his/her identity or to instruct the application what
to do. Java supports multiple methods for user input to be read. In this chapter we will be covering a few
ways to build interactive Java applications. Interactive Java application takes their input either from the
console, from Java-built interfaces, and from either desktop or web.

JShell is a command line interface where a developer can enter variable declarations and one-line
statements that are executed when <Enter> is pressed. Command line interface shells like bash and
terminals like Command Prompt from Windows can be used to issue commands to programs in the form of
successive lines of text. JShell was covered at the beginning of the book for the simple reason that it was a
Java 9 novelty. The following sections will cover how to read user-provided data and instructions using the
command-line interface. The sections after that will focus on building Java applications with a desktop/web
interface.

Reading Data from the Command Line
This section is dedicated to reading user input from the command line, whether it is the IntelliJ IDEA console
or whether the program is run from an executable jar from any terminal speci�ic to an operating system. In
the JDK there are two classes that can be used to read user data from the command line:
java.util.Scanner and java.io.Console, and this section will cover them both in detail. Without
further ado, let’s get into it.

Reading User Data Using System.in
Before introducing logging in Chapter 9 to print data in the console methods under System.out, they
were used often in the code samples for this book. There is also a counterpart utility object named
System.in used to read data from the console: data that a user of the program introduces to control the
application �low. You might have noticed that until now all Java programs when executed would be started,
would process the data, would execute the declared statements, and then they would terminate, exit
gracefully, or with an exception when something went wrong. The most simple and common way to pass
decision of termination to the user is to end the main method with a call to System.in.read() . This
method reads the next byte of data from the input stream and the program is paused until the user
introduces a value; as the value is returned, we can even save it and print it. Listing 10-1 shows the code to
read user input using System.in.read.

package com.apress.bgn.ten;

import java.io.IOException;

public class ReadingFormStdinDemo {

 public static void main(String... args) throws IOException {

 System.out.print("Press any key to terminate:");

https://doi.org/10.1007/978-1-4842-7080-6_10

 byte[] b = new byte[3];

 int read = System.in.read(b);

 for (int i = 0; i < b.length; ++i) {

 System.out.println(b[i]);

 }

 System.out.println("Key pressed: " + read);

 }

}

Listing 10-1 Reading a Value Provided By the User in the Console

The user input is saved in the byte[] b array; its size is arbitrary. You can type anything you want.
Only the �irst three bytes will be kept in the array. However, this way of reading information is not really
useful, is it? I mean, look at the following snippet, which depicts the previous code being executed and a
random text being inserted.

Press any key to terminate: ini mini miny moo. # inserted text

32

105

110

Key pressed: 3

Let’s see how we can read full text from the user: enter class java.util.Scanner.

Using java.util.Scanner
The System.in variable is of type java.io.InputStream, which is a JDK special type extended by all
classes representing an input stream of bytes. You will learn more about the class InputStream in
Chapter 11. This means that System.in can be wrapped in any java.io.Reader extension (read
Chapter 11 for more information), so bytes can be read as readable data. The one that is really important is
a class named Scanner from package java.util. An instance of this type can be created by calling its
constructor and providing System.in as an argument. The Scanner class provides a lot of next*()
methods that can be used to read almost any type from the console. In Figure 10-1 you can see the next*()
methods list.

Figure 10-1 Scanner methods for reading various types of data

The advantage of using Scanner to read data from the console is that the values read are automatically
converted to the proper types when possible; when it is not, a java.util.InputMismatchException
is thrown.

The following piece of code was designed so you can select the type of value you want to read by
inserting a text and then the value. In Listing 10-2 the appropriate method of the Scanner instance is called
to read the value.

package com.apress.bgn.ten;

import java.math.BigInteger;

import java.util.ArrayList;

import java.util.List;

import java.util.Scanner;

public class ReadingFromStdinUsingScannerDemo {

 public static final String EXIT = "exit";

 public static final String HELP = "help";

 public static final String BYTE = "byte";

 public static final String SHORT = "short";

 public static final String INT = "int";

 public static final String BOOLEAN = "bool";

 public static final String DOUBLE = "double";

 public static final String LINE = "line";

 public static final String BIGINT = "bigint";

 public static final String TEXT = "text";

 public static final String LONGS = "longs";

 public static void main(String... args) {

 Scanner sc = new Scanner(System.in);

 String help = getHelpString();

 System.out.println(help);

 String input;

 do {

 System.out.print("Enter option: ");

 input = sc.nextLine();

 switch (input) {

 case HELP:

 System.out.println(help);

 break;

 case EXIT:

 System.out.println("Hope you had fun. Buh-bye!");

 break;

 case BYTE:

 byte b = sc.nextByte();

 System.out.println("Nice byte there: " + b);

 sc.nextLine();

 break;

 case SHORT:

 short s = sc.nextShort();

 System.out.println("Nice short there: " + s);

 sc.nextLine();

 break;

 case INT:

 int i = sc.nextInt();

 System.out.println("Nice int there: " + i);

 sc.nextLine();

 break;

 case BOOLEAN:

 boolean bool = sc.nextBoolean();

 System.out.println("Nice boolean there: " + bool);

 sc.nextLine();

 break;

 case DOUBLE:

 double d = sc.nextDouble();

 System.out.println("Nice double there: " + d);

 sc.nextLine();

 break;

 case LINE:

 String line = sc.nextLine();

 System.out.println("Nice line of text there: " + line);

 break;

 case BIGINT:

 BigInteger bi = sc.nextBigInteger();

 System.out.println("Nice big integer there: " + bi);

 sc.nextLine();

 break;

 case TEXT:

 String text = sc.next();

 System.out.println("Nice text there: " + text);

 sc.nextLine();

 break;

 default:

 System.out.println("No idea what you want bruh!");

 }

 } while (!input.equalsIgnoreCase(EXIT));

 }

 private static String getHelpString() {

 return new StringBuilder("This application helps you test various

usage of Scanner. Enter type to be read next:")

 .append("\n\t help > displays this help")

 .append("\n\t exit > leave the application")

 .append("\n\t byte > read a byte")

 .append("\n\t short > read a short")

 .append("\n\t int > read an int")

 .append("\n\t bool > read a boolean")

 .append("\n\t double > read a double")

 .append("\n\t line > read a line of text")

 .append("\n\t bigint > read a BigInteger")

 .append("\n\t text > read a text value").toString();

 }

}

Listing 10-2 Reading a Value Provided By the User in the Console Using java.util.Scanner

As you probably noticed, in the previous code sample most scanner methods are called together with a
nextLine() . This is because every input you provide is made of the actual token and a new line character
(the <Enter> pressed to end your input), and before you can enter your next value, you need to take that
character from the stream as well.

Listing 10-3 depicts the code in Listing 10-2 being used to read a few user values.

This application helps you test various usage of Scanner. Enter type to be rea

 help > displays this help

 exit > leave the application

 byte > read a byte

 short > read a short

 int > read an int

 bool > read a boolean

 double > read a double

 line > read a line of text

 bigint > read a BigInteger

 text > read a text value

Enter option: byte

12

Nice byte there: 12

Enter option: bool

true

Nice boolean there: true

Enter option: line

some of us are hardly ever here

Nice line of text there: some of us are hardly ever here

Enter option: text

john

Nice text there: john

Enter option: text

the rest of us are made to disappear...

Nice text there: the

Enter option: double

4.2

Nice double there: 4.2

Enter option: int

AAAA

Exception in thread "main" java.util.InputMismatchException

 at java.base/java.util.Scanner.throwFor(Scanner.java:939)

 at java.base/java.util.Scanner.next(Scanner.java:1594)

 at java.base/java.util.Scanner.nextInt(Scanner.java:2258)

 at java.base/java.util.Scanner.nextInt(Scanner.java:2212)

 at

chapter.ten.scanner/com.apress.bgn.ten.ReadingFromStdinUsingScannerDemo.main(R

Listing 10-3 Running the ReadingFromStdinUsingScannerDemo Class

The output that is highlighted in the previous listing represents the test case for the next() method .
This method should be used to read a single String token. The next token gets converted to a String
instance, and obviously the token ends when a whitespace is encountered. That is why in the previous
example the only read text ends up being the. In the last case the expected option is an integer value, but
AAAA is entered, and that is why the exception is thrown.

When you need to repeatedly read the same type of values from the console you can peek at the value
you want to read and check it before reading it to avoid the InputMismatchException being thrown.
For this particular scenario, each of the next*() methods has a pair method named hasNext*(). To
show an example how these methods can be used, let’s add an option to the previous code to be able to read
a list of long values, as depicted in Listing 10-4.

...

public static final String LONGS = "longs";

...

 String input;

 do {

 System.out.print("Enter option: ");

 input = sc.nextLine();

 switch (input) {

 case LONGS:

 List<Long> longList = new ArrayList<>();

 while (sc.hasNextLong()) {

 longList.add(sc.nextLong());

 }

 System.out.println("Nice long list there: " + longList);

 // else all done

 sc.nextLine();

 sc.nextLine();

 break;

 default:

 System.out.println("No idea what you want bruh!");

 }

 } while (!input.equalsIgnoreCase(EXIT));

...

Listing 10-4 Using java.util.Scanner to Read a List of Long Values

Although it seems weird, we need to call the nextLine() method twice: once for the character that
cannot be converted to long, so the while loop ends, and once for the end of the line character, so the next
read is the type of the following read value.

There are a few other methods in the Scanner class that can be used to �ilter the input and read only
desired tokens, but the methods listed in this section are the ones you will use the most.

Using java.io.Console
The java.io.Console class was introduced in Java version 1.6, one version later than Scanner, and
provides methods to access the character-based console device, if any, associated with the current Java
virtual machine.

The methods of class java.io.Console can thus be also used to write to the console, not only read
user input. If the JVM is started from a background process or a Java editor the console will not be available,
as the editor redirects the standard input and output streams to its own window. That is why if we were to
write code using Console we can only test it by running the class or jar from a terminal, by calling java
ReadingUsingConsoleDemo.class or java -jar using-console-1.0-SNAPSHOT.jar The
console of a JVM, if available, is represented in the code by a single instance of class Console that can be
obtained by calling System.console().

In Figure 10-2 you can see the methods that can be called on the console instance.

Figure 10-2 Scanner methods for reading various types of data

Obviously, the read*(..) methods are for reading user input from the console and printf(..) and
format(..) are for printing text in the console. The special case here are the two readPassword(..)
methods that allow for a text to be read from the console, but not depicted while is being written. This
means that a Java application supporting authentication can be written without any actual user interface.
Listing 10-5 depicts a sample code to see all that in action.

package com.apress.bgn.ten;

import java.io.Console;

import java.util.Calendar;

import java.util.GregorianCalendar;

public class ReadingUsingConsoleDemo {

 public static void main(String... args) {

 Console console = System.console();

 if (console == null) {

 System.err.println("No console found.");

 return;

 } else {

 console.writer().print("Hello there! (reply to salute)\n");

 console.flush();

 String hello = console.readLine();

 console.printf("You replied with: '" + hello + "'\n");

 Calendar calendar = new GregorianCalendar();

 console.format("Today is : %1$tm %1$te,%1$tY\n", calendar);

 char[] passwordChar = console.readPassword("Please provide

password: ");

 String password = new String(passwordChar);

 console.printf("Your password starts with '" +

password.charAt(0) + "' and ends with '" +

password.charAt(password.length()-1) + "'\n");

 }

 }

}

Listing 10-5 Using java.io.Console to Read and Write Values

In the previous code sample, various methods to read and write data using the console were used
intentionally to show you how they should be used.

The console.writer() returns an instance of java.io.PrintWriter that can be used to print
messages to the console. The catch is that the messages are not printed until console.flush() is called.
This means that more messages can be queued up by the java.io.PrintWriter instance and printed
only when flush() is called or when its internal buffer is full. The console.format(..) is called to
print a formatted message, in this case a Calendar instance is used to extract the current date and print it
according to the following template: dd mm,yyyy de�ined by this argument %1$tm %1$te,%1$tY.
Templates accepted by the Console methods that use formatters are de�ined in class
java.util.Formatter.

The complicated part: running this code in IntelliJ is not possible, so we have to either execute the class
or the jar.

 To avoid creating new OS console windows when running code most IDEs, like IntelliJ IDEA, are
using window-less Java. Since there is no window, there is no console for the user to access and insert
data. So applications using must java.io.Console be executed in the command line.

The easiest way is to con�igure the Maven maven-jar-plugin to create an executable jar with the
main class to be executed being ReadingUsingConsoleDemo. The jar produced by Maven can be found
here: /chapter10/using-console/target/using-console-2.0-SNAPSHOT.jar. Just open a
terminal in IntelliJ IDEA if you want to, by clicking the Terminal button, and go to the target directory.
Once there, execute java -jar using-console-2.0-SNAPSHOT.jar and have fun. In Listing 10-6
you can see the entries I used to test the program.

> cd chapter10/using-console/target

> java -jar using-console-2.0-SNAPSHOT.jar

Hello there! (reply to salute)

Salut!

You replied with: 'Salut!'

Today is: 06 21,2021

Please provide password:

Your password starts with 'g' and ends with 'a'

Listing 10-6 Running the Class ReadingUsingConsoleDemo

This is all that is worth covering about using the console, since once working on a real production-ready
project you might never need it.

Build Applications Using Swing
Swing is a GUI widget toolkit for Java. It is part of the JDK starting with version 1.2 and was developed to
provide more pleasant looking and practical components for building user applications with complex
interfaces with all types of buttons, progress bars, selectable lists, and so on. Swing is based on an early
version of something called AWT (short for Abstract Window Toolkit), which is the original Java user-
interface widget toolkit. AWT is pretty basic and had a set of graphical interface components that were
available on any platform, which means AWT is portable, but this did not imply that AWT code written on
one platform would actually work on another, because of the platform speci�ic limitations. AWT components
depend on the native equivalent components, which is why they were named heavyweight components. In
Figure 10-3 you can see a simple Java AWT application.

Figure 10-3 Simple Java AWT application

It’s a simple window that contains a list, a text area, and a button. The theme, also called look-and-feel of
the application, is the same one as the operating system it was built on—macOS in the examples in this
chapter. It cannot be changed because of the reason mentioned earlier: AWT taps into the OS native
Graphical interface. If you run the same code on a Windows machine the window will look different, because
it will use the Windows theme.

Swing components are built in Java and follow the AWT model, but provide a pluggable look-and-feel.
Swing is implemented entirely in Java and includes all features of AWT, but they are no longer depending on
the native GUI; this is why they are called light-weight components. Swing provides everything AWT does
and also extends the set of components with higher-level ones such as tree-view, list box, and tabbed panes.
Also, the look and feel and the theme is pluggable and can be easily changed. This obviously implies a much
better portability than AWT applications: a possibility to write more complex application design with
components that are not platform-speci�ic, and because Swing is an alternative to AWT, there was a lot more
development done on it.

When web applications took �light, their UI was pretty basic because browsers had quite limited
capabilities. AWT was introduced to build Java web applications called applets. Java applets were small
applications that were launched from the browser and then executed within the JVM installed on the users
operating system in a process separate from the browser itself. That is why an applet can be run in a frame
of the web page, a new application window, or standalone tools designed for testing applets. Java applets
were using the GUI from the operating system, which made them prettier than the bulky initial look of HTML
at the time. They are now deprecated and were scheduled to be removed in Java 11.

As for Java desktop applications written in Swing or AWT, they are rarely used anymore and you might
learn to build one during school, but are otherwise quite antique. Nevertheless, there are legacy applications
used by certain institutions and companies that have had a long run in their business that are built with
Swing. I’ve seen Swing applications used by restaurants to manage tables and orders, and I think most
supermarkets use Swing applications to manage shopping items as well. This is why this section exists in
this book, because you might end up working on maintaining such application and it is good to know the
basics, because Swing is still a part of the JDK. All Swing components (AWT too) are part of the
java.desktop module. So if you want to use Swing components, you have to declare a dependence on this
module. In Listing 10-7 a con�iguration snippet is shown. You can see that the module of our project that
uses Swing declares its dependency on the java.desktop module, by using the requires directive in its
module-info.java.

module chapter.ten.swing {

 requires java.desktop;

}

Listing 10-7 Module Con�iguration for the using-swing Project

The application depicted in Figure 10-3 was build using AWT. This section will cover building something
similar in Swing and even adding more components to it. The main class of any Swing application is named
JFrame, and instances of this type are used to create windows with border and title. The code in Listing 10-
8 does just that.

package com.apress.bgn.ten;

import javax.swing.*;

import java.awt.*;

public class BasicSwingDemo extends JFrame {

 public static void main(String... args) {

 BasicSwingDemo swingDemo = new BasicSwingDemo();

 swingDemo.setTitle("Swing Demo Window");

 swingDemo.setSize(new Dimension(500,500));

 swingDemo.setVisible(true);

 }

}

Listing 10-8 Swing Application with a Simple Title

In the previous code an instance of javax.swing.JFrame is created, a title is set for it, and we also set
a size so when the window is created we can actually see something. To actually display the window the

setVisible(true) must be called on the JFrame instance. When running the previous code, a window
the one in Figure 10-4 is displayed.

Figure 10-4 Simple Java Swing application

By default, the window is positioned in the upper left corner of your main monitor, but that can be
changed by using some Swing components to compute a position relative to the screen size. Determining
size and position of a Swing window relative to screen size is only limited by the amount of math you are
willing to get into.

At this moment, if we close the displayed window, the application keeps running. By default, closing the
window just makes it invisible by calling setVisible(false). If we want to change the default behavior
to exiting the application, we have to change the default operation done when closing. This can be easily
done by adding the following line of code after creating the JFrame instance.

swingDemo.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

The JFrame.EXIT_ON_CLOSE constant is part of a set of constants that de�ine application behavior
when the window is closed. This one is used to declare that application should exit when the window is
closed. The other related options are:

DO_NOTHING_ON_CLOSE does nothing, including closing the window.
HIDE_ON_CLOSE is the default option that causes setVisible(false) to be called.
DISPOSE_ON_CLOSE is used when an application has more than one window; this option is used to exit
the application when the last displayable window was closed.

Most Swing applications are written by extending the JFrame class to gain more control over its
components, so the preceding code can also be written as depicted in Listing 10-9:

package com.apress.bgn.ten;

import javax.swing.*;

import java.awt.*;

public class ExitingSwingDemo extends JFrame {

 public static void main(String... args) {

 ExitingSwingDemo swingDemo = new ExitingSwingDemo();

 swingDemo.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 swingDemo.setTitle("Swing Demo Window");

 swingDemo.setSize(new Dimension(500,500));

 swingDemo.setVisible(true);

 }

}

Listing 10-9 Swing Application That Exits When Closed

Now that we have a window, let’s start adding components, because changing the look-and-feel is
pointless if we do not have more components so that we can notice the change. Each Swing application has
at least one JFrame that is the root, the parent of all other windows, because windows can be created by
using the JDialog class as well. The JDialog is the main class for creating a dialog window, a special type
of window that contains mostly a message and buttons to select options. Developers can use this class to
create custom dialog windows or use JOptionPane class methods to create a variety of dialog windows.

Back to adding components to a JFrame instance : components are added to a JFrame by adding them
to its container. A reference to the JFrame container can be retrieved by calling getContentPane() . The
default content pane is a simple intermediate container that inherits from JComponent, which extends
java.awt.Container (Swing being an extension of AWT, most of its components are AWT extensions).
For JFrame the default content pane is actually an instance of JPanel. This class has a �ield of type
java.awt.LayoutManager that de�ines how other components are arranged in a JPanel. The default
content pane of a JFrame instance uses a java.awt.BorderLayout as its layout manager that splits a
pane in �ive regions: EAST, WEST, NORTH, SOUTH, and CENTER. Each of the zones can be referred by a
constant with a matching name de�ined in the BorderLayout, so if we would like to add an exit button to
our application, we could add it to the south region by writing the code like the one depicted in Listing 10-
10.

package com.apress.bgn.ten;

import javax.swing.*;

import java.awt.*;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

public class LayeredSwingDemo extends JFrame {

 private JPanel mainPanel;

 private JButton exitButton;

 public LayeredSwingDemo(String title) {

 super(title);

 mainPanel = (JPanel) this.getContentPane();

 exitButton = new JButton("Bye Bye!");

 exitButton.addActionListener(new ActionListener() {

 @Override

 public void actionPerformed(ActionEvent e) {

 System.exit(0);

 }

 });

 mainPanel.add(exitButton, BorderLayout.SOUTH);

 }

 public static void main(String... args) {

 LayeredSwingDemo swingDemo = new LayeredSwingDemo("Swing Demo

Window");

 swingDemo.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);

 swingDemo.setSize(new Dimension(500, 500));

 swingDemo.setVisible(true);

 }

}

Listing 10-10 Swing Application using BorderLayout to Arrange Components

In Figure 10-5 you can see the modi�ied application. We’ve added an exit button in the SOUTH area of the
content pane and underlined the overall region arrangement of the BorderLayout.

Figure 10-5 Border layout zones

Also, because the new button has to be the only way to exit our application, the

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

was replaced with

setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);

and an java.awt.event.ActionListener instance was attached to the button so that it could
record the event of the button being clicked and react accordingly, in this case exiting the application. Most
Swing components support listeners that can be de�ined to capture events performed on the object by the
user and react in a certain way. As we can see the button expands and �ills the entire space of the region,
because it inherits the dimension of the region. To avoid that, the button should be put in another container
and that container should use a different layout: the FlowLayout . As the name implies, this layout allows
for Swing components to be added in a directional �low, as in a paragraph. Adjustments can be made similar
to a text formatting in text document and constants are de�ined for components being aligned: in the center
(CENTER), left-justi�ied (LEFT), and so on. In the previous example, we will wrap the exitButton in
another JPanel that will make use of the FlowLayout. Listing 10-11 shows how FlowLayout can be
used to place a button in the right corner of the JFrame instance.

...

public LayeredSwingDemo(String title) {

 super(title);

 mainPanel = (JPanel) this.getContentPane();

 exitButton = new JButton("Bye Bye!");

 exitButton.addActionListener(e -> System.exit(0));

 JPanel exitPanel = new JPanel();

 FlowLayout flowLayout = new FlowLayout();

 flowLayout.setAlignment(FlowLayout.RIGHT);

 exitPanel.setLayout(flowLayout);

 exitPanel.setComponentOrientation(ComponentOrientation.RIGHT_TO_LEFT);

 exitPanel.add(exitButton);

 mainPanel.add(exitPanel, BorderLayout.SOUTH);

 }

...

Listing 10-11 Swing Application Using BorderLayout and FlowLayout to Arrange Components

There are more layouts that can be used, but let’s complete the application by adding a list with a
number of entries and add a listener to it so when you click an element is added to a text area added to the
center of the frame. A swing list can be created by instantiating the JList<T> class. This will create an
object that displays a list of objects and allows the user to select one or more items. The swing JList<T>
class contains a �ield of type ListModel<T> that manages the data contents displayed by the list. When
created and elements were added, each object is associated with an index, and when the user selects an
object, the index can be used for processing as well. In the next snippet the JList object is declared,
initialized, a ListSelectionListener is associated with it, to de�ine the action to perform when an element
from the list is selected. In our case the element value must be added to a JTextArea. This object is
depicted in Listing 10-12.

private static String[] data = {"John Mayer", "Frank Sinatra",

 "Seth MacFarlane", "Nina Simone", "BB King", "Peggy Lee"};

private JList<String> list;

private JTextArea textArea;

...

 textArea = new JTextArea(50, 10);

 //NORTH

 list = new JList<>(data);

 list.addListSelectionListener(new ListSelectionListener() {

 @Override

 public void valueChanged(ListSelectionEvent e) {

 if (!e.getValueIsAdjusting()) {

 textArea.append(list.getSelectedValue() + "\n");

 }

 }

 });

 mainPanel.add(list, BorderLayout.NORTH);

 //CENTER

 JScrollPane txtPanel = new JScrollPane(textArea);

 textArea.setBackground(Color.LIGHT_GRAY);

 mainPanel.add(txtPanel, BorderLayout.CENTER);

...

Listing 10-12 Swing Application Using Layouts and JTextArea to Arrange Components

When clicking on a list element two things happen: the previous element is deselected and one that was
clicked the most recently is selected, so the selected element changes. The getValueIsAdjusting()
method returns whether or not this is one in a series of multiple events (selection events, click events,

whatever is supported), where changes are still being made, and we test if this method returns false to check
that the selection has been already made, so we can get the value of the current selected element and add it
to the text area.

Regarding the JTextArea instance , this one is added to a JScrollPane instance that allows for the
textArea contents to still be visible as it �ills with text by providing a scrollbar or two, depending on the
con�iguration. The JScrollPane can also be wrapped around a list with too many items as well, to make
sure all of them are accessible. Also, as we are not interested in user-provided input via the text area, the
setEditable(false); method is called.

Now that we have a more complex application, it is time to play with the look-and-feel of the application.
Until now we’ve used the default one provided by the underlying Operating System. Using Swing, the look-
and-feel can be con�igured as one of the defaults supported by the JDK or extra custom ones can be used,
that are provided as dependencies in the project class path, or developers can create their own. To specify a
look-and-feel explicitly, the following line of code must be added in the main method, before any swing
component is created:

UIManager.setLookAndFeel(..).

This method receives as parameter a String value representing the fully quali�ied name of the
appropriate subclass of look-and-feel. This class must extend the abstract javax.Swing.LookAndFeel.
Although not necessary, you could specify explicitly that you want to use the native GUI by calling:

UIManager.setLookAndFeel(UIManager.getCrossPlatformLookAndFeelClassName());

Knowing this, let’s do something interesting. The UIManager class contains utility methods and nested
classes used to manage look-and-feel for swing applications. One of these methods is
getInstalledLookAndFeels() , which extracts the list of supported look-and-feels and returns them
as an LookAndFeelInfo[]. Knowing this, let’s do the following: list all the supported look-and-feels, add
them to our list, and when the user selects one of them, let’s apply them. Unfortunately, as swing is rarely
used these days, there are not that many custom look-and-feels that we could use in our application, so the
only thing to do is to work with what JDK has. The code in Listing 10-13 initializes the data array with the
look and feel fully quali�ied class names.

private static String[] data;

...

 public static void main(String... args) throws Exception {

 UIManager.setLookAndFeel(UIManager.getCrossPlatformLookAndFeelClassNam

 UIManager.LookAndFeelInfo[] looks = UIManager.getInstalledLookAndFeels

 data = new String[looks.length];

 int i =0;

 for (UIManager.LookAndFeelInfo look : looks) {

 data[i++] = look.getClassName();

 }

 SwingDemo swingDemo = new SwingDemo("Swing Demo Window");

 swingDemo.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);

 swingDemo.setSize(new Dimension(500, 500));

 swingDemo.setVisible(true);

 }

...

Listing 10-13 Code Sample to Initialize the List of Supported Look-and-Feels

Now the ListSelectionListener implementation becomes a little complicated, because after
selecting a new look and feel class, we have to call repaint() on the JFrame instance to apply the new
look and feel, so we’ll take the declaration out into its own class and provide the SwingDemo object as
argument so that repaint() can be called on it, inside the valueChanged(..) method . The code
snippet is depicted in Listing 10-14.

private class LFListener implements ListSelectionListener {

 private JFrame parent;

 public LFListener(JFrame swingDemo) {

 parent = swingDemo;

 }

 @Override

 public void valueChanged(ListSelectionEvent e) {

 if (!e.getValueIsAdjusting()) {

 textArea.append(list.getSelectedValue() + "\n");

 try {

 UIManager.setLookAndFeel(list.getSelectedValue());

 Thread.sleep(1000);

 parent.repaint();

 } catch (Exception ee) {

 System.err.println(" Could not set look and feel! ");

 }

 }

 }

}

Listing 10-14 Code Sample Showing repaint() Being Called

If we run the modi�ied program and select each item in the list one by one, we should see the window
look change a little bit. In Figure 10-6 you can see all windows side by side; the differences are barely
noticeable, but they are there.

Figure 10-6 Different look-and-feel provided by JDK

This is what you can do with Swing components with a few lines of code. There are a lot more
components in the Swing library, but Swing is not used that much anymore. As the focus nowadays is on
mobile and web applications, this section will have to end here. If you ever need to create or maintain a
Swing application, Oracle provides quite an extensive tutorial with a lot of examples that you can directly
copy-paste and adapt to your necessities.1

Introducing JavaFX
JavaFX Script was a scripting language designed by Sun Microsystems forming part of the JavaFX family of
technologies on the Java Platform. It was released shortly after JDK 6 in December 2008 and for a while

developers expected it would be dropped because it really did not catch on that much, being a totally
different language. After acquiring Sun Microsystems, Oracle decided to keep it and they transformed into
the JavaFX library, which is a set of graphics and media packages that can be used by developers to design,
create, test, debug, and deploy rich client applications that operate consistently across diverse platforms,
including mobile ones. Java FX was intended to replace Swing as the main GUI library of the JDK, but so far
both Swing and JavaFX have been part of all JDK versions until 10. This changed in JDK 11. Starting with JDK
11, JavaFX is available as a separate module, decoupled from the JDK. JavaFX is still not used as much as
Oracle hoped, and separating it from the JDK might encourage the OpenJFX community to contribute with
some innovative ideas that might transform this library into an actual competitor for the other existing GUI
toolkits on the market (e.g., Eclipse SWT).2

After its exclusion from the JDK, Java FX has evolved on its own, keeping itself in sync with the Java
versions being released. At the time this chapter was written, there was a Java FX 17 EAP version available
for download at https://openjfx.io.

 After downloading the version suitable for your system, unpack the archive. There should be at least
a legal and a lib directory inside. The lib directory contains the JavaFX binaries packed as JAR �iles.
Depending on the operating system, the lib might contain other library �iles. For the examples in this
chapter you have to copy the following three �iles: javafx.base.jar, javafx.controls.jar, and
javafx.graphics.jar in the chapter10/using-javafx/libs.

 On some computers, like new macOS laptops, the examples might not run because some library �iles
must be copied in a speci�ic location. To �ind out the location where to copy them, run the main
JavaFxDemo class with the -Dprism.verbose=true VM argument. This will cause the error log to be
more verbose amd tell you where the library �iles must be copied.

For example, for macOS the directory is /Users/[user]/Library/Java/Extensions and the �iles
to be copied there are all the �iles with the dylib extension from the javafx-sdk-17/lib directory.

Java FX used to be part of the JDK, so it has classes and other components. Java FX code is currently
normal Java code, so no more scripting. Java FX components are de�ined under a list of java.fx modules.
In the following con�iguration snippet you can see that the module of our project that uses Java FX declares
its dependency on a few java.fx modules, by using the requires directive in its module-info.java
as depicted in Listing 10-15.

module chapter.ten.javafx {

 requires javafx.base;

 requires javafx.graphics;

 requires javafx.controls;

 opens com.apress.bgn.ten to javafx.graphics;

}

Listing 10-15 Con�iguration Sample for a Project Using java.fx Modules

Java FX Application launcher uses re�lection to launch an application, so we need to open the
com.apress.bgn.ten package to allow re�lection using the opens directive. Without that directive a
java.lang.IllegalAccessException is thrown and the application does not start.

The easiest start is a simple window that has just a closing option and explain. The code to display a
plain square window is depicted in Listing 10-16.

package com.apress.bgn.ten;

import javafx.application.Application;

import javafx.scene.Scene;

import javafx.scene.layout.StackPane;

import javafx.stage.Stage;

https://openjfx.io/

public class JavaFxDemo extends Application {

 public static void main(String... args) {

 launch(args);

 }

 @Override

 public void start(Stage primaryStage) {

 primaryStage.setTitle("Java FX Demo Window!");

 StackPane root = new StackPane();

 primaryStage.setScene(new Scene(root, 500, 500));

 primaryStage.show();

 }

}

Listing 10-16 Simple JavaFx Application

The �irst thing you need to know is that the main class of the application must extend the
javafx.application.Application class, because this is the entry point for a Java FX application.
This is required because JAVA FX applications are run by a new performance graphics engine named Prism
that sits on top of the JVM. Aside from Prism, the graphic engine, Java FX comes with its own windowing
system named Glass, a media engine and a web engine. They are not exposed publicly; the only thing
available to developers is the Java FX API that provides access to any components you might need to build
application with fancy interfaces. All these engines are tied together by the Quantum toolkit that is the
interface between these engines and the layer above in the stack. The Quantum toolkit is the one that
manages execution threads and rendering.

The launch(..) method is a static method in the Application class that is used to launch a
standalone application. It is usually called from the main method and can only be called once, otherwise a
java.lang.IllegalStateException will be thrown. The launch method does not return until the
application is exited, by closing all windows or calling Platform.exit(). The launch method creates an
JavaFxDemo instance, calls the init() method on it and then calls start(..). The start(..) method
is declared abstract in the Application class, so the developer is forced to provide a concrete
implementation.

A Java FX application is build using components de�ined under the javafx.scene and has a
hierarchical organization. The core class of the javafx.scene package is the javafx.scene.Node that
is the root of the Scene hierarchy. Classes in this hierarchy provide implementations for all the visual
elements of the application’s user interface. Because all of them have Node as a root class, visual elements
are called nodes which makes an application a scene graph of nodes and the initial node of this graph is
called a root. Each node has a unique identi�ier, a style class, and a bounding volume, and with the exception
of the root note, each node in the graph has a single parent and zero or more children. Beside that, a node
has the following properties:

effects, such as blurs and shadow, are useful when you hover with your mouse over the interface to make
sure you click the right component.
opacity.
transformations for changing visual state or position.
event handlers similar to listeners in Swing, used to de�ine reaction on mouse, key, and input method.
application speci�ic state.

The scene graph simpli�ies building rich interfaces a lot, and because it also includes primitive graphics
such as rectangles, text, images, and media, and animating various graphics can be accomplished by the
animation APIs for package javax.animation. If you are interested in �inding out more about what’s
under the hood of Java FX, here is a detailed article about it:
https://docs.oracle.com/javafx/2/architecture/jfxpub-architecture.htm. The focus
of this book is more on how to do things and not now they work, so reading that article might help with the
design of your future solutions.

We’ve started again with a simple window. The �irst step is to add a button that will quit the application.
As rendering a Java FX application involves a rendering engine, this means it has to shutdown gracefully, so

https://docs.oracle.com/javafx/2/architecture/jfxpub-architecture.htm

calling System.exit(0) is not a preferred option. The contents of the start(..) method must call a
special JavaFX method to close the application gracefully. The code is shown in Listing 10-17.

package com.apress.bgn.ten;

import javafx.application.Application;

import javafx.application.Platform;

import javafx.event.ActionEvent;

import javafx.event.EventHandler;

import javafx.scene.*;

import javafx.stage.*;

public class SimpleJavaFxDemo extends Application {

 public static void main(String... args) {

 launch(args);

 }

 @Override

 public void start(Stage primaryStage) {

 primaryStage.setTitle("Java FX Demo Window!");

 Button btn = new Button();

 btn.setText("Bye bye! ");

 btn.setOnAction(new EventHandler<ActionEvent>() {

 @Override

 public void handle(ActionEvent event) {

 Platform.exit();

 }

 });

 StackPane root = new StackPane();

 root.getChildren().add(btn);

 primaryStage.setScene(new Scene(root, 300, 300));

 primaryStage.show();

 }

}

Listing 10-17 Simple JavaFx Application with a Button

Running the SimpleJavaFxDemo class causes the window depicted in Figure 10-7 to pop up on your
screen, and if you click the Bye, bye! button the application will be gracefully closed because of the
Platform.exit() call.

Figure 10-7 JavaFX window demo

The button was just thrown in there, inside the window and put by default in the center, because no code
was written to position it. Java FX supports arranging nodes3 in a window in a manner similar to Swing, but
Java FX provides layout panes that support several different styles of layouts. The equivalent of a JPanel
with BorderLayout manager in JavaFX is a built-in layout name named BorderPane. The BorderPane
provides �ive regions where to place your nodes, with distribution similar to BorderLayout, but different
names. Listing 10-18 shows the code to place our button in the bottom region in the right corner and then
discuss more about it.

package com.apress.bgn.ten;

import javafx.application.*;

import javafx.geometry.Insets;

import javafx.geometry.Pos;

import javafx.scene.*;

import javafx.stage.*;

public class PannedJavaFxDemo extends Application {

 public static void main(String... args) {

 launch(args);

 }

 @Override

 public void start(Stage primaryStage) {

 primaryStage.setTitle("Java FX Demo Window!");

 Button exitButton = new Button();

 exitButton.setText("Bye bye! ");

 exitButton.setOnAction(event -> Platform.exit());

 BorderPane borderPane = new BorderPane();

 HBox box = new HBox();

 box.setPadding(new Insets(10, 12, 10, 12));

 box.setSpacing(10);

 box.setAlignment(Pos.BASELINE_RIGHT);

 box.setStyle("-fx-background-color: #85929e;");

 box.getChildren().add(exitButton);

 borderPane.setBottom(box);

 StackPane root = new StackPane();

 root.getChildren().add(borderPane);

 primaryStage.setScene(new Scene(root, 500, 500));

 primaryStage.show();

 }

}

Listing 10-18 Simple JavaFx Application with a Properly Positioned Button

Running the PannedJavaFxDemo class causes the window depicted in Figure 10-8 to pop up on your
screen, and the �igure has been modi�ied to show the regions of a BorderPane.

Figure 10-8 JavaFX Window with BorderPane demo

As you can see, the approach to decide where our button should be located is similar to Swing, with a few
differences. The BorderPane has �ive regions named: Top, Bottom, Center, Left, and Right. To place a
node in each of those regions a set*(..) method for each of them has been de�ined: setTop(..),
setBottom(..), setCenter(..), setLeft(..), and setRight(..). To further customise the
position of the node it should be placed in a HBox node, another JavaFX element that can be customized
quite extensively. As you can see from the code, we are setting the background using CSS style elements. We
customize the space between nodes in it and borders of the containing node by using an instance of class
Insets and we customize the alignment of the contained nodes by calling
box.setAlignment(Pos.BASELINE_RIGHT). There are many more things that HBox supports, so
what you can do with a box is limited (mostly) only by your imagination.

So beside all making pretty code in the preceding code sample, the following was done: the root node
became parent to a BorderPane node, in the bottom region of the BorderPane a HBox was added, and
this HBox instance became parent for a Button. As you can see, this organization is hierarchic, with the
button being the last node in the hierarchy.

We also avoided using a layer pane by styling the HBox node properly.
It is time to add the last functionality to our application, the text area, and the list with selectable

elements. On being selected, the value is added to the text area. To create a text area in JavaFX is simple. The

class has a pretty obvious name: TextArea. We can directly add the node in the center region of the
BorderPane because the JavaFX text area is scrollable by default. So there is no need to put it in a
ScrollPane, although the class does exist in the javafx.scene.control package and is useful to
display nodes inside it that make a form that is bigger than the window size. The three lines of code in
Listing 10-19 create a node of type TextArea, declare it to not be editable, and add it to the center region
of the BorderPane. The code in Listing 10-19 shows the code to do this.

TextArea textArea = new TextArea();

textArea.setEditable(false);

borderPane.setCenter(textArea);

Listing 10-19 Creating and Con�iguring a JavaFX TextArea

Next one is the list. The list is a little more complicated but also a lot more fun to work with, because by
using JavaFX there is a lot you can do with a list. The class that needs to be instantiated to create a list object
is named ComboBox<T>. This class is just one of a bigger family of classes used to create lists, the root class
being the abstract class ComboBoxBase<T>. Depending on the desired behavior of the list, if we want
support for single or multiple selection and if we want the list to be editable or not, the proper
implementation should be chosen. In our case, the ComboBox<T> class matches the following
requirements: we need a noneditable list that supports single element section. A ComboBox<T> has a
valueProperty() method that returns the current user input. The user input can be based on a selection
from a drop-down list or the input manually provided by the user when the list is editable. Listing 10-20
shows how to add a list to the top section of the BorderPane and add a listener to record the selected
value and save it the TextArea that we previously declared.

import javafx.scene.control.ComboBox;

...

private static String data = {"John Mayer", "Frank Sinatra",

 "Seth MacFarlane", "Nina Simone", "BB King", "Peggy Lee"};

...

ComboBox<String> comboBox = new ComboBox<>();

comboBox.getItems().addAll(data);

borderPane.setTop(comboBox);

comboBox.valueProperty().addListener(

 new ChangeListener<String>() {

 @Override

 public void changed(ObservableValue<? extends String> observable,

String oldValue, String newValue) {

 textArea.appendText(newValue + "\n");

 }

});

Listing 10-20 Creating and Con�iguring a JavaFX ComboBox<T>

The ComboBox<T> value �ield is an ObservableValue<T> instance . The listener is added to this
instance, and it is noti�ied anytime its value changes and its changed(..) method is called. As you can see,
the changed(..) method receives as argument the previous list selected value as well, because maybe we
have some logic that requires both.

In AWT and Swing there was not much that you could do with a list visually. You had that look and feel,
and that was that. JavaFX supports more visual customization for nodes as it even supports CSS. That is why
in the next section we’ll make our ComboBox<T> list interesting. In Java FX each entry in a list is a cell that
can be drawn differently. To do that, we have to add a CellFactory<T> to this class that will create for
each item in a list an instance of ListCell<T>.

If a CellFactory<T> is not speci�ied the cells will be created with the default style. Listing 10-21
shows the code to customize a ComboBox<T>.

comboBox.setCellFactory(

 new Callback<>() {

 @Override

 public ListCell<String> call(ListView<String> param) {

 return new ListCell<>() {

 {

 super.setPrefWidth(200);

 }

 @Override

 public void updateItem(String item, boolean empty) {

 super.updateItem(item, empty);

 if (item != null) {

 setText(item);

 if (item.contains("John") || item.contains("BB")) {

 setTextFill(Color.RED);

 } else if (item.contains("Frank") ||

item.contains("Peggy")) {

 setTextFill(Color.GREEN);

 } else if (item.contains("Seth")) {

 setTextFill(Color.BLUE);

 } else {

 setTextFill(Color.BLACK);

 }

 } else {

 setText(null);

 }

 }

 };

 }

});

Listing 10-21 Creating and Customizing Colors of Cells of a JavaFX ComboBox<T>

The javafx.util.Callback interface is a practical utility interface that can be used every time after
a certain action, a callback is needed. In this case, after a String value is added to the ListView of the
ComboBox<T> node (ListView as the name says is the visual, the interface type of a ComboBox<T> that
displays a horizontal or vertical list of items), a cell is being created and some piece of logic was inserted
there to decide the color of the text depicted in the cell based on its value.

Inside the ListCell<T> declaration there is a block of code that seems out of place.

{

 super.setPrefWidth(200);

}

The previous block is an interesting way to call a method from the parent class inside the declaration of
an anonymous class. The setPrefWidth(200) is called here to make sure all the ListCell<T>
instances will have the same size. The logic in the updateItem(..) is quite obvious, and thus it does not
need any extended explanation. The result of adding the cell factory can be viewed in Figure 10-9.

Figure 10-9 JavaFX colored ComboBox demo

Internationalization
Interactive applications are usually created to be deployed on more than one server and available 24/7 and
in multiple locations. As not all of us speak the same language, the key to convince people to become your
clients and use your application is to build it in multiple languages. The process of designing an application
so that it meets user needs in multiple countries and easily adapts to satisfy those needs is called
internationalization . For example, take the initial Google page. Depending on the location where it is
accessed, it changes language according to that area. When you create an account, you can select the
language you prefer. This does not mean that the Google has built a web application for each region; it’s a
single web application that displays text in different languages depending on the location of the user.
Internationalization should always be taken into consideration in the design phase of an application,
because adding it later is quite dif�icult. We do not have a web application, but we will internationalize the
Java FX application built so far in this chapter.

When you start reading about internationalization you might notice that �iles or directories containing
the internationalization property �iles are named i18n, which is because there are 18 letters between i and n
in the English alphabet.

Internationalization is based on locale. Locale is the term given to a combination of language and region.
The application locale is the one that decides which internationalization �ile will be used to customize the
application. The locale concept is implemented in Java by the java.util.Locale class, and a Locale
instance represents a geographical, political, or cultural region. When an application depends on the locale
we say that it is locale-sensitive, as most applications are nowadays. Selecting a locale can be something a
user has to do as well. Each Locale can be used to select the corresponding locale resources, which are �iles
containing locale speci�ic con�igurations. These �iles are grouped per locale and can usually be found under
the resources directory. These resources are used to con�igure an instance of
java.util.ResourceBundle that can be used to manage locale-speci�ic resources.

To build a proper use case for localization, the previous JavaFX application will be modi�ied; instead of
singer names, the list will contain a list of animal names with labels that can be translated in various
languages. A list with the available languages will be added as well, and when a language will be selected

from this list a Locale static variable will be set with the corresponding locale and the window will be
reinitialized so that all labels can be translated to the new language. Let’s start by creating the resource �iles.

Resource �iles are �iles with properties extensions that contain, as the name says, a list of properties
and values. Each line respects the following pattern: property_name=property_value, and if it doesn’t
it is considered an internationalization resource �ile. Each property name must be unique in the �ile; if there
is a duplicate it will be ignored and IntelliJ IDEA will complain by underlining the property with red. For
every language that needs to be supported we need to create one property �ile that contains the same
property names, but different values, as the values will represent the transaction of that value in each
language. All �iles must have names that contain a common suf�ix and end with the language name and the
country, separated by underscores, because these are the two elements needed to create a Locale instance.
For our JavaFX application we have three �iles, depicted in Figure 10-10.

Figure 10-10 Resource bundle with three resource �iles

The suf�ix is global, and this will be our resource bundle name as well. This is made quite obvious by
IntelliJ IDEA, which �igures out what our �iles are used for and depicts them in a most obvious way. The
contents of the �iles are depicted in Table 10-1.

Table 10-1 Contents of Resource Files

Property Name Property value in global_en_GB Property value in global_fr_FR Property value in global_it_IT

English English Anglais Inglese

French French Français Francese

Italian Italian Italien Italiano

Cat Cat Chat Gatto

Dog Dog Chien Cane

Parrot Parrot Chien Pappagallo

Mouse Mouse Souris Topo

Cow Cow Perroquet Mucca

Pig Pig Porc Maiale

WindowTitle Java FX Demo Window! Java FX Démo Fenêtre! Java FX Dimostratione Finestra!

Property Name Property value in global_en_GB Property value in global_fr_FR Property value in global_it_IT

Byebye Bye bye! Bye bye! Ciao!

ChoosePet Choose Pet: Choisir un animal de compagnie: Scegli un animale domestico:

ChooseLanguage Choose Language: Choisissez la langue: Scegli la lingua:

IntelliJ IDEA can help you to edit resource bundle �iles easily and make sure you are not missing any keys
from any of them by providing a special view for them. When you open a resource �ile, in the bottom left
corner you should see two tabs: one is named Text and when clicked it allows you to edit a properties �ile as
a normal text �ile, and one is named Resource Bundle and when clicked it opens a special view that has on
the left all the property names in the resource �iles and on the right views from all resource �iles containing
values for property names selected. In Figure 10-11 you can see this view and the values for property
ChooseLanguage.

Figure 10-11 Resource bundle IntelliJ IDEA editor

The property names can contain special characters as underscore and dots to separate parts of them. In
this book example the property names are simple, because we have so few of them. In bigger applications
property names usually contain a pre�ix that is relevant to their purpose; for example, if the property value
is a title the name will be pre�ixed with title. The property names in our �iles could be changed to the one
listed in Listing 10-22.

English --> label.lang.english

French --> label.lang.french

Italian --> label.lang.italian

Cat --> label.pet.cat

Dog --> label.pet.dog

Parrot --> label.pet.parrot

Mouse --> label.pet.mouse

Cow --> label.pet.cow

Pig --> label.pet.pig

WindowTitle --> title.window

Byebye --> label.button.byebye

ChoosePet --> label.choose.pet

ChooseLanguage --> label.choose.language

Listing 10-22 Recommended Internationalization Property Names

Now that we have covered how the resource �iles should be written, let’s see how they can be used. To
create a ResourceBundle, we �irst need a locale. Applications have a default locale that can be obtained by
calling Locale.getDefault(), and a ResourceBundle instance can be obtained by using a bundle
name and a locale instance, as depicted in the code snippet here:

Locale locale = Locale.getDefault();

ResourceBundle labels = ResourceBundle.getBundle("global", locale);

When there is a valid ResourceBundle is obtained, it can be used to replace all hardcoded String
instances with calls to return text values from the resource �ile matching the selected locale. So every time
we need to set a label for a node, instead of using the actual text, we use a call to:
resourceBundle.getString("[property_name]") to get the localized text.

When a JavaFX window is reloaded, all its nodes are recreated. To be able to in�luence how, we need to
add a couple of static properties to keep the selected locale set. For the application that we’ve build so far,
after internationalizing it, the code looks like the one in Listing 10-23.

package com.apress.bgn.ten;

import javafx.application.*;

import javafx.geometry.*;

import javafx.scene.*;

import javafx.stage.*;

import java.io.File;

import java.net.URL;

import java.net.URLClassLoader;

import java.util.Locale;

import java.util.ResourceBundle;

public class JavaFxDemo extends Application {

 private static final String BUNDLE_LOCATION = "chapter10/using-

javafx/src/main/resources";

 private static ResourceBundle resourceBundle = null;

 private static Locale locale = new Locale("en", "GB");

 private static int selectedLang = 0;

 public static void main(String... args) {

 Application.launch(args);

 }

 @Override

 public void start(Stage primaryStage) throws Exception {

 loadLocale(locale);

 primaryStage.setTitle(resourceBundle.getString("WindowTitle"));

 String[] data = {resourceBundle.getString("Cat"),

 resourceBundle.getString("Dog"),

 resourceBundle.getString("Parrot"),

 resourceBundle.getString("Mouse"),

 resourceBundle.getString("Cow"),

 resourceBundle.getString("Pig")};

 BorderPane borderPane = new BorderPane();

 //Top

 final ComboBox<String> comboBox = new ComboBox<>();

 comboBox.getItems().addAll(data);

 final ComboBox<String> langList = new ComboBox<>();

 String[] languages = {

 resourceBundle.getString("English"),

 resourceBundle.getString("French"),

 resourceBundle.getString("Italian")};

 langList.getItems().addAll(languages);

 langList.getSelectionModel().select(selectedLang);

 GridPane gridPane = new GridPane();

 gridPane.setHgap(10);

 gridPane.setVgap(10);

 Label labelLang = new

Label(resourceBundle.getString("ChooseLanguage"));

 gridPane.add(labelLang, 0, 0);

 gridPane.add(langList, 1, 0);

 Label labelPet = new Label(resourceBundle.getString("ChoosePet"));

 gridPane.add(labelPet, 0, 1);

 gridPane.add(comboBox, 1, 1);

 borderPane.setTop(gridPane);

 //Center

 final TextArea textArea = new TextArea();

 textArea.setEditable(false);

 borderPane.setCenter(textArea);

 comboBox.valueProperty().addListener((observable, oldValue,

newValue)

 -> textArea.appendText(newValue + "\n"));

 langList.valueProperty().addListener((observable, oldValue,

newValue)

 -> {

 int idx = langList.getSelectionModel().getSelectedIndex();

 selectedLang = idx;

 if (idx == 0) {

 //locale = Locale.getDefault();

 new Locale("en", "GB");

 } else if (idx == 1) {

 locale = new Locale("fr", "FR");

 } else {

 locale = new Locale("it", "IT");

 }

 primaryStage.close();

 Platform.runLater(() -> {

 try {

 new JavaFxDemo().start(new Stage());

 } catch (Exception e) {

 System.err.println("Could not reload application!");

 }

 });

 });

 HBox box = new HBox();

 box.setPadding(new Insets(10, 12, 10, 12));

 box.setSpacing(10);

 box.setAlignment(Pos.BASELINE_RIGHT);

 box.setStyle("-fx-background-color: #85929e;");

 Button exitButton = new Button();

 exitButton.setText(resourceBundle.getString("Byebye"));

 exitButton.setOnAction(event -> Platform.exit());

 box.getChildren().add(exitButton);

 borderPane.setBottom(box);

 //Bottom

 StackPane root = new StackPane();

 root.getChildren().add(borderPane);

 primaryStage.setScene(new Scene(root, 500, 500));

 primaryStage.show();

 }

 private void loadLocale(Locale locale) throws Exception {

 File file = new File(BUNDLE_LOCATION);

 URL[] url = {file.toURI().toURL()};

 ClassLoader loader = new URLClassLoader(url);

 resourceBundle = ResourceBundle.getBundle("global", locale, loader);

 }

}

Listing 10-23 JavaFX Internationalized Application

You might be wondering why we used another way of loading the resource bundle and why the full
relative path to the bundle location was used. If we want the application to be runnable from the IntelliJ
Interface, we have to provide a path relative to the execution context of the application. When the
application is built and packed up in a runnable Java archive, the resource �iles are part of it and in the
classpath. When running the application by executing the main() method in an Java IDE, the classpath is
relative to the actual location of the project.

The code snippet in Listing 10-24 restarts the scene by closing the Stage, then instantiates a
JavaFxDemo object and calling start(..). This means the whole hierarchical node structure is recreated
and the only state that is kept is the one that was de�ined in static objects. This is needed for the locale
setting, because the start(..) method execution now starts with a call to loadLocale(locale),
which selects the locale of the application and loads the ResourceBundle so that all nodes can be labeled
with texts returned by it.

primaryStage.close();

Platform.runLater(() -> {

 try {

 new JavaFxDemo().start(new Stage());

 } catch (Exception e) {

 System.err.println("Could not reload application!");

 }

});

Listing 10-24 JavaFX Code Snippet to Restart the Scene

The application we have built until now and played with is quite a simple one. If you will ever need to
build interfaces that will be more complex and internationalization will be needed, this will mean more than
translations are con�igured. You might need to have �iles with different number and date formats, or multiple
resource bundles. Internationalization is quite a big topic and a quite important one, as an application is
rarely built nowadays to be used in a single region. For a Java beginner, just knowing what the supporting
classes are and how they can be used is a very good starting point.

Building a Web Application
Here we are, building a web application. A web application is an application that runs on a server and can be
accessed using a browser. Until recently most Java applications needed Web servers like Apache Tomcat or
Glass�ish or Enterprise Servers like JBoss (currently known as WildFly) or TomEE to be hosted on so that
they could be accessed. You would write the web application with the classes and HTML or JSP �iles, pack it
in a WAR (Web ARchive) or a EAR (Enterprise ARchive), deploy it to a server, and start the server. The server
would provide the context of the application and map requests to classes that would provide the answer to
be served as response. Assuming the application would be deployed on a Tomcat server, in Figure 10-12 you
can see an abstract schema of the deployed application functionality.

Figure 10-12 Web application deployed on a Apache Tomcat server

Requests to a web application can come from other clients than browsers (e.g., mobile applications), but
because this section covers web applications, we’ll assume all requests to our application come from a
browser.

Let’s explain the Internet a little �irst. The Internet is an information system made up of a lot of
computers linked together. Some computers host application servers that provide access to applications,
some computers access these applications, and some do both. The communication between these computers
is done over a network through a list of protocols: HTTP, FTP, SMTP, POP, and so on. The most popular
protocol is HTTP which stands for Hypertext Transfer Protocol, and it is an asymmetric request-response
client-server protocol, which means that the client makes a request to the server and then the server sends a
response. Subsequent requests have no knowledge of one another, and they do not share any state, thus they
are stateless. HTTP requests can be of different types, being categorized by the action they require the
application on server to perform, but there are four types that are more commonly used by developers (the
one listed in Figure 10.12 in the request arrow). We won’t go into details regarding request components as
this is not really related to Java, but we’ll just cover enough details to understand how a web application
works. The four request types and the types of responses the server sends back for each of them are in the
following list.

GET : whenever a user enters an URL in the browser such as http://my-site.com/index.html the
browser transforms the address into a Request message and sends it to the web server. What the browser
does can be easily viewed by opening the debugger view in Firefox, clicking on the Network tab and
trying to access https://www.google.com/. In Figure 10-13 you can see Firefox debugger view
showing the URL being requested and the contents of the Request message.

Figure 10-13 Network debugger view in Firefox

In the right part of the image, you can see the URL being Requested, the type of request (which is also
named a Request Method which is GET in this case), and the Remote address of the server where the
request was sent to. There is also a button named Raw headers that will open a view depicting the contents
of the the request and response as text. GET requests are used to retrieve something from the server, in this
example, a web page. If the web page can be found, the response is sent with the page to be displayed by the
browser and other attributes such a status code to communicate that all went �ine. There is a list of HTTP
status codes and the most important one is the 200 code, which means all went okay. In the previous image
you can see that to display the page a lot of additional requests are done, after the initial request is replied,
and all subsequent requests are successful, because the status returned by the server is put in the �irst
column in the table and it’s always 200.

PUT : this type of request is used when data is sent to the server to be used to updated existing data. In
enterprise applications, a PUT requests is interpreted as a request to update an existing object. The
request contains the updated version of the object and means to identify it. A successful PUT request
generates a response with a status code of 204.
POST : this type of request is used when the server needs to be instructed to save data for storage as well.
The difference from PUT request is that this data does not exist on the server yet. In enterprise
applications a POST request is either used to send credentials so the user can be authenticated or to send
data that will be used to create a new object. When a POST request is used to send credentials the
response status code is 200 when the user is authenticated and 401(Unauthorized) when the user
credentials are not good, when a POST request is used to send data to be save, the 201-status code is
returned if the object was created.
DELETE : this type of request is used when the server is asked to delete data. The response code is 200
when all went okay, and if it did not, any other error code related to the cause.

There are a few other HTTP methods that are used in more complex applications. If you are more curious
about Request methods, status codes, and HTTP basics overall, I con�idently recommend you look at this
tutorial: http://www.steves-internet-guide.com/http-basics.

Now let’s get back to Writing Java Web applications.
We’ve mentioned that until a while ago, we needed a server to host a web application. This is no longer

the case as of a few years ago. As databases were replaced for testing purposes and applications with
minimum functionality with embedded databases, the same happened to web servers as well. If you want to
quickly write a simple web application, you have now the option of using an embedded server like Jetty or

http://my-site.com/index.html
https://www.google.com/
http://www.steves-internet-guide.com/http-basics

Tomcat Embedded. Supporting complex pages with an embedded server is pretty dif�icult, but embedded
servers are usually used for microservices which only need simple REST APIs.

Java Web Application with an Embedded Server
For this section of the chapter an embedded Tomcat server is used to display a few simple web pages, using
Java servlets (Patience young padawan, they will be explained shortly). Tomcat 10.0.7 version is used, which
means Java modules are supported. The advantage of using an embedded Apache Tomcat server is that you
can run a web application by executing a main method.

The code is depicted in the Listing 10-25 and it declares a single, very simple servlet that serves as the
main page of the application.

package com.apress.bgn.ten;

import jakarta.servlet.http.HttpServlet;

import jakarta.servlet.http.HttpServletRequest;

import jakarta.servlet.http.HttpServletResponse;

import org.apache.catalina.Context;

import org.apache.catalina.LifecycleException;

import org.apache.catalina.startup.Tomcat;

// other import statements omitted

public class WebDemo {

 private static final Logger LOGGER =

Logger.getLogger(Main.class.getName());

 public static final Integer PORT =

Optional.ofNullable(System.getenv("PORT")).map(Integer::parseInt).orElse(8080)

 public static final String TMP_DIR =

Optional.ofNullable(System.getenv("TMP_DIR")).orElse("/tmp/tomcat-tmp");

 public static final String STATIC_DIR =

Optional.ofNullable(System.getenv("STATIC_DIR")).orElse("/tmp/tomcat-static");

 public static void main(String... args) throws IOException,

LifecycleException {

 Tomcat tomcat = new Tomcat();

 tomcat.setBaseDir(TMP_DIR);

 tomcat.setPort(PORT);

 tomcat.getConnector();

 tomcat.setAddDefaultWebXmlToWebapp(false);

 String contextPath = ""; // root context

 boolean createDirs = new File(STATIC_DIR).mkdirs();

 if(createDirs) {

 LOGGER.info("Tomcat static directory created successfully.");

 } else {

 LOGGER.severe("Tomcat static directory could not be created.");

 }

 String docBase = new File(STATIC_DIR).getCanonicalPath();

 Context context = tomcat.addWebapp(contextPath, docBase);

 addIndexServlet(tomcat, contextPath, context); // omitted

 Runtime.getRuntime().addShutdownHook(new Thread(() -> {

 try {

 tomcat.getServer().stop();

 } catch (LifecycleException e) {

 e.printStackTrace();

 }

 }));

 tomcat.start();

 tomcat.getServer().await();

 }

}

Listing 10-25 Simple Java Application with an Embedded Server

Writing an application with an embedded Tomcat server is quite easy when you don’t complex web
pages making use of templating libraries for HTML generation like JSP, for example. The code snippet in
Listing 10-24 only requires the tomcat-embed-core library as dependency, and the steps to create the
server are pretty simple and explained here:

Create a org.apache.catalina.startup.Tomcat instance and select the port to expose it. In this
case it is 8080, the default value of the PORT variable, unless declared using a system environment
variable with the same name.
Set a base directory for the Tomcat instance, where the running server will save its various generated
�iles such as logs. In this case, the directory is con�igured to be /tmp/tomcat-tmp unless declared using
a system environment variable with the TMP_DIR name is declared. The user running the application
should have writing rights over that location.
Set a directory where static �iles for Tomcat are located. In this case, the directory is con�igured to be
/tmp/tomcat-static unless declared using a system environment variable with the STATIC_DIR
name is declared. The user running the application should have writing rights over that location.
Disable default con�igurations for a Tomcat by calling
tomcat.setAddDefaultWebXmlToWebapp(false). In this case this prevents the
org.apache.jasper.servlet.JspServlet from being registered. This servlet enables using JSP
�iles in the webapp, but when con�igured automatically takes over and assumes any request must resolve
to a JSP page, so the Java Servlets are ignored. Since we want to keep the application simple and use Java
servlets, we disable it.
Make sure the server shuts down gracefully when the application is closed, by adding shutdown hook.
Write a simple servlet to display the main page of the application to test that the server was started
correctly and works as intended. This is done by the addIndexServlet(..) method that was omitted
from the previous listing to make sure the focus would be on the Tomcat instance. The method is shown
in Listing 10-26.

 private static void addIndexServlet(Tomcat tomcat, String contextPath,

Context context) {

 HttpServlet indexServlet = new HttpServlet() {

 @Override

 protected void doGet(HttpServletRequest req, HttpServletResponse

resp)

 throws IOException {

 PrintWriter writer = resp.getWriter();

 writer.println("<html><title>Welcome</title><body

style=\"background-color:black\">");

 writer.println("<h1 style=\"color:#ffd200\"> Embedded Tomcat

10.0.7 says hi!</h1>");

 writer.println("</body></html>");

 }

 };

 String servletName = "IndexServlet";

 String urlPattern = "/";

 tomcat.addServlet(contextPath, servletName, indexServlet);

 context.addServletMappingDecoded(urlPattern, servletName);

 }

Listing 10-26 A Simple Method That Creates a Very Simple Servlet and Registers It with a Tomcat Instance

The servlet instance must be associated with a name and a URL pattern, and when the user tries to open
the serverURL/contextPath/urlPattern page, the doGet(..) method is called that returns the
response constructed in its body.

A Java web application deployed on a server (even an embedded one) needs a context path. The context
path value is a part of the URL to access the application. An URL is made up of four parts:

protocol: the application-level protocol used by client and server to communicate, such as http,
https, ftp, and so on.
hostname: the DNS domain name (e.g., www.google.com) or ip-address (e.g., 192.168.0.255) or any
alias recognized in a network. For example, when an application is accessed from the same computer the
server is installed on either 127.0.0.1, localhost, or 0.0.0.0 can be used.
path and filename: the name and location of the resource, under the server document base
directory. Users usually request to view speci�ic pages hosted on servers, which is why URLs look like this:
https://docs.oracle.com/index.html. A very used practice is to hide the paths and �ilenames
by using internal mappings (called URL redirection) because of security reasons.

So where does the contextPath mentioned previously value come in? When we have an embedded
server declared as in the previous code sample, any �iles that are hosted by it can be accessed by using the
http://localhost:8080/. But on a dedicated server, more than one application can be running at the
same time, and there must be a way to separate them, right? This is where the contextPath value comes
in handy. By setting the context path to /demo instead of the empty string, the WebDemo application and the
resources it provides to the users can be accessed at http://localhost:8080/demo/.

Anyway, back to Java web applications. Java Web Applications are dynamic; the pages are generated from
Java code using Servlets and JSP(Java Server Pages) pages. Because of that, Java Web applications
are not running on a server but inside a web container on the server. (This is why Tomcat or Jetty are
sometimes called Servlet Containers.) The web container provides a Java runtime environment for Java Web
applications. Apache Tomcat is such a container running in the JVM, which supports execution of servlets
and JSP pages. A servlet is a Java class that is a subclass of jakarta.servlet.http.HttpServlet.
Instances of this type answer HTTP Requests within a web container.

 Apache Tomcat 10.x is an open-source software implementation of a subset of the Jakarta EE
(formally Java EE) technologies. Tomcat is based on Servlet 5.0, JSP 3.0, EL 4.0, WS 2.0, and JASIC 2.0. Up
to Tomcat 9.x a servlet is a Java class that is a subclass of javax.servlet.http.HttpServlet. The
migration from javax. packages to jakarta.</emphasis> was needed in Tomcat 10.x to separate
Oracle of�icial Java products from the open-source ones, built using Eclipse build servers.4

A JSP page is a �ile with .jsp extension that contains HTML and Java Code. A JSP page gets compiled into a
servlet by the web container the �irst time the page is accessed. In essence, the servlet is the core element of
a Java Web application. The server must also know that the servlet exists and how to identify it, which where
the call tomcat.addServlet(contextPath, servletName, servlet) comes in. It basically says
to add the servlet with name servletName to the application context with the contextPath value
context path, and then associate an URL pattern to the servlet, the
context.addServletMapping(urlPattern, servletName) is called.

When a Java Web Application is running all its servlets and JSP are running into its context, but they have
to be added into the context in the code and mapped to an URL pattern. The requests URL which matches
that URL pattern will access that servlet. In Listing 10-26 the servlet was created on the spot by instantiating
the HttpServlet abstract class and resulting in an anonymous servlet instance. Listing Listing 10-27
depicts a concrete class named SampleServlet that extends the HttpServlet class. The advantage of

http://www.google.com/
https://docs.oracle.com/index.html

doing this is that the URL pattern and the servlet name can become properties of this class simplifying the
syntax of adding them to the application context.

package com.apress.bgn.ten;

import jakarta.servlet.http.HttpServlet;

import jakarta.servlet.http.HttpServletRequest;

import jakarta.servlet.http.HttpServletResponse;

import java.io.IOException;

import java.io.PrintWriter;

import java.util.logging.Logger;

public class SampleServlet extends HttpServlet {

 private static final Logger LOGGER =

Logger.getLogger(SampleServlet.class.getName());

 private final String servletName = "sampleServlet";

 private final String urlPattern = "/sample";

 @Override

 protected void doGet(HttpServletRequest req, HttpServletResponse resp)

 throws IOException {

 PrintWriter writer = resp.getWriter();

 try {

 writer.println(WebResourceUtils.readResource("index.html"));

 } catch (Exception e) {

 LOGGER.warning("Could not read static file : " +

e.getMessage());

 }

 }

 @Override

 public String getServletName() {

 return servletName;

 }

 public String getUrlPattern() {

 return urlPattern;

 }

}

Listing 10-27 The SampleServlet Class

The urlPattern property was added to this class for practical reasons, to keep everything related to
this servlet in one place. The same goes for servletName. If the intention were to instantiate this class
multiple times to create multiple servlets, these two properties should be declared as con�igurable. Adding
this servlet to the application is pretty easy. An object of this type needs to be created and then the
tomcat.addServlet(..) and context.addServletMappingDecoded(..) must be called, as
depicted in Listing 10-28.

SampleServlet sampleServlet = new SampleServlet();

tomcat.addServlet(contextPath, sampleServlet.getServletName(),

sampleServlet);

context.addServletMappingDecoded(sampleServlet.getUrlPattern(),

sampleServlet.getServletName());

Listing 10-28 Adding the SampleServlet Class to the Web Application

Inside the doGet(..) method the contents of the index.html �ile are read (using
WebResourceUtils that is part of the project for this chapter, but not relevant to this chapter) and are
written in the response object using the response PrintWriter.

As you can see, the doGet(..) method receives as arguments two objects: the
HttpServletRequest instance is read and all contents of the request sent from the client can be
accessed using appropriate methods and the HttpServletResponse instance, which is used to add
information to the response. In the previous code sample, we are just writing HTML code read from another
�ile. Extra methods that can be called is the response.setStatus(HttpServletResponse.SC_OK)
that sets the response status.

Aside from the doGet(..) method, there are do*(..) methods matching each HTTP method that
declare the same type of parameters.

Starting with Servlet 3.0, servlets can be written using the @WebServlet annotation, which removes
the necessity to be explicitly added to the web application and mapped in the context as shown in Listing
10-28, because they are picked automatically when Tomcat starts. Also, there is no need to instantiate the
servlet class either.

The SampleServlet class after Servlet 3.0 is shown in Listing 10-29.

package com.apress.bgn.ten;

import jakarta.servlet.annotation.WebServlet;

import jakarta.servlet.http.*;

// other import statements omitted

@WebServlet(

 name = "sampleServlet",

 urlPatterns = {"/sample"}

)

public class SampleServlet extends HttpServlet {

 private static final Logger LOGGER =

Logger.getLogger(SampleServlet.class.getName());

 @Override

 protected void doGet(HttpServletRequest req, HttpServletResponse resp)

 throws IOException {

 PrintWriter writer = resp.getWriter();

 try {

 writer.println(WebResourceUtils.readResource("index.html"));

 } catch (Exception e) {

 LOGGER.warning("Could not read static file : " +

e.getMessage());

 }

 }

}

Listing 10-29 Adding the SampleServlet Class to the Web Application

So this is how we handle servlets, but how do we handle JSP pages using an embedded server? It’s not
impossible, but it is not easy either. That is why, for this task, usually people reply on smarter frameworks
such as Spring Boot.5

To avoid going through a lot of setup code and details, JSP syntax will be explained on a WEB application
that has to be deployed on a standalone instance of a Tomcat Server.

Java Web Application on a Standalone Server
Java Applications that are designed to be deployed on an application server are either packaged as a Web
Archive (war) or Enterprise Application Archive (ear). These are special type of Java Archives (jar) that are
used to group together other Jars, JSPs (Java Server Pages), Java classes, static pages, and other resources

that are part of a web application. There is a maven plug-in named maven-war-plugin that packs an
artifact as a war. The EAR is a �ile format used by Jakarta EE to package one or more modules into a single
deployment onto an application server; it basically links a group of jars and wars together into a single
application.

In this chapter a very simple web application, packaged as a war, containing Java Server Pages is built
and deployed to a standalone instance of an Apache Tomcat server.

To install Apache Tomcat server locally, go to the of�icial site at
https://tomcat.apache.org/download-10.cgi and download Apache Tomcat version 10.0.7 and
follow the instructions for your operating system. Since Apache Tomcat is provided as an archive, the
installation process should be as simple as unpacking it somewhere on your computer. In this chapter and
IntelliJ IDEA Tomcat launcher is used to run the web application, so the interaction with the server will be
minimal.

A Java web application has a different structure than a typical Java application. It contains the typical
main and test directories, but it also contains a webapp directory that contains the web resources. The
project structure is depicted in Figure 10-14.

Figure 10-14 Web application structure change

Notice the web.xml �ile located under the WEB-INF directory. This �ile de�ines the structure of the web
application. Before Servlet 3.0 this �ile was the only way to map servlets onto urlPatterns and con�igure
them to be part of the application. After Servlet 3.0 and the introduction of annotations, this �ile is mostly
empty.

When the web application is built the bytecode of the application is saved under WEB-INF/classes. If
the application uses 3rd party libraries, they are all saved into WEB-INF/lib.

Now, back to Java Server Pages.
There are two ways of writing JSP pages. The simplest one, which is rarely used these days because it

couples HTML code with Java code, is to use JSP scriptlets. JSP scriptlets are pieces of Java code embedded
in HTML code using directive tags. There are three type of directive tags:

<%@ page ... %> declarative directive used to provide instructions to the container. Instructions
declared using this directive belong to the current page and can be used anywhere in the page. Such a
directive can be used to import Java Types or de�ine page properties. Example:

<%@ page import="java.util.Date" %>

<%@ page language="java" contentType="text/html; charset=US-ASCII"

pageEncoding="US-ASCII" %>

<%@ include ... %> declarative is used to include a �ile during translation phase. Thus, the current
JSP �ile, where this directive is used, is a composition of its content and the content of the �ile that is
declared using this directive.
<%@ include file = "footer.jsp" >

http://tomcat.apache.org/

<%@ taglib ... %> declarative is used to declare a tag library with elements that will be used in the
JSP page. This declarative is important because it is used to import a library with custom tags and element
that will be used to write the JSP page. These tags provide dynamic functionality without the need for
scriptlets.

The index.jsp ahown in Figure 10-14 is quite simple and its content is depicted in Listing 10-30:

<%@ page import="java.util.Date" %>

<%@ page language="java" contentType="text/html; charset=US-ASCII"

pageEncoding="US-ASCII" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

 <head><title>Web Application Demo JSP Page</title></head>

 <body style="background-color:black">

 <h1 style="color:#ffd200"> Today is <%= new Date() %></h1>

 </body>

</html>

Listing 10-30 The Very Simple index.jsp Page Contents

It does nothing else but print today’s date, and it does so by calling new Date(). As you can see, we are
using Java code in what it looks like an HTML page. Because those directives are in there and the extension is
.jsp, the container knows this �ile must be compiled into a servlet. The default page a web application
opens with when its root domain is accessed, if nothing was mapped to the default url pattern "/" is a �ile
named index.html or index.htm or index.jsp in this case. Beside from adding the �ile named
index.jsp in the WEB-INF directory and thus making sure the container can �ind it, all that is left to do is
to con�igure an Apache Tomcat Launcher in IntelliJ IDEA and con�igure it to deploy the war that results when
this application is built before starting Tomcat.

To con�igure an Apache Tomcat launcher, IntelliJ IDEA needs to have the Tomcat and TomEE plug-in
enabled. If you install IntelliJ IDEA without customizing it, this plug-in is installed by default. If you managed
somehow to uninstall it, just open the IntelliJ IDE Preferences window, select Plug-ins, and look for it in the
Marketplace and tick its box, as depicted in Figure 10-15.

Figure 10-15 Enabling Tomcat and TomEE plug-in in IntelliJ IDEA

Once the plug-in is installed, click on the Launch section and select Edit Con�igurations..., and from the
list on the left select Tomcat Server ➤ Local, as depicted in Figure 10-16.

Figure 10-16 Creating Apache Tomcat launcher in IntelliJ IDEA

A new dialog window opens. Click on the Con�igure button to select the local Apache Tomcat and click
Ok, as depicted in Figure 10-17.

Figure 10-17 Creating Apache Tomcat Launcher in IntelliJ IDEA: selecting Tomcat Server

After selecting the server, click on the Fix button or on the Deployment tab and click the + sign to select
an artifact. IntelliJ IDEA will identify all web applications in the project and provide a list to choose from.
Select simple-webapp, as depicted in Figure 10-18.

Figure 10-18 Creating Apache Tomcat launcher in IntelliJ IDEA: selecting the web application to deploy

Feel free to edit the name of the launcher and the context path, as shown in Figure 10-19.

Figure 10-19 Creating Apache Tomcat launcher in IntelliJ IDEA: selecting the web application to deploy

After con�iguring the launcher like this, start the server and open the
http://localhost:8080/demo page in your browser. You should just see a simple message like this in
the page:

Today is Mon Aug 20 01:41:29 BST 2018

The depicted date will be the one on your system when you run the application yourself.
Since taglibs have been mentioned, let’s talk a little about them as well. The most basic tag library is

named JSTL and stands for JSP Standard Tag Library . Other more evolved tag libraries are provided by JSF
(Java Server Faces), Thymeleaf, or Spring. Tags de�ined in this library can be used to write JSP pages that
change behavior depending on request attributes, which can be used to iterate, test values,
internationalization and formatting. Based on the JSTL functions provided, the tags are grouped into �ive
categories, and they can be used in a JSP page only after specifying the appropriate directive. Following are
the �ive directives listed together with the overall topic the tags are covering:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %> JSTL core tags
provide support for displaying values, iteration, conditional logic, catch exception, url, forward, or redirect
response.
<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt" %> JSTL
formatting tags are provided for formatting of numbers, dates, and i18n support through locales and
resource bundles.
<%@ taglib uri="http://java.sun.com/jsp/jstl/sql" prefix="sql" %> JSTL SQL tags
provide support for interaction with relational databases, but never use SQL in a web page because it is
very easily hackable (just look up the term SQL Injection on Google).
<%@ taglib uri="http://java.sun.com/jsp/jstl/xml" prefix="x" %> JSTL XML tags
provide support for handling XML documents, parsing, transformations, and XPath expressions
evaluation.
<%@ taglib uri="http://java.sun.com/jsp/jstl/functions" prefix="fn" %> JSTL
function tags provide a number of functions that can be used to perform common operations such as text
manipulations.

Now that we know the basic tag categories, which ones do you think we will need to use to redesign our
index.jsp page? If you thought about FMT and Core, you are right. Also, JSP pages that use taglibs are
most always backed up by a servlet that sets the proper attributes on the request that will be used within
the JSP page. So let’s modify the index.jsp page, as depicted in Listing 10-31.

<%@ page language="java" contentType="text/html;charset=US-ASCII"

pageEncoding="US-ASCII"%>

<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt" %>

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

 <head>

 <title>Web Application Demo JSP Page</title>

 </head>

 <body style="background-color:black">

 <fmt:formatDate value="${requestScope.today}" pattern="dd/MM/yyyy"

var="todayFormatted"/>

 <p style="color:#ffd200"> Today is <c:out value="${todayFormatted}"

/> </p>

 </body>

</html>

Listing 10-31 Using FMT adn Core Taglibs to Rewrite index.jsp

And while we are at it, let’s rename it to make it obvious what it is used for: to date.jsp and write a
servlet class named DateServlet to add to the request the today attribute, which will be formatted by
the <fmt:formatDate> tag and the result saved into the todayFormatted variable and later printed
out by the <c:out> tag. The DateServlet is depicted in Listing 10-32.

package com.apress.bgn.ten;

import jakarta.servlet.RequestDispatcher;

import jakarta.servlet.ServletException;

import jakarta.servlet.annotation.WebServlet;

import jakarta.servlet.http.HttpServlet;

import jakarta.servlet.http.HttpServletRequest;

import jakarta.servlet.http.HttpServletResponse;

import java.io.IOException;

import java.util.Date;

@WebServlet(

 name = "dateServlet",

 urlPatterns = {"/date"}

)

public class DateServlet extends HttpServlet {

 @Override

 protected void doGet(HttpServletRequest request, HttpServletResponse

response)

 throws IOException, ServletException {

 System.out.println(" ->>> Getting date ");

 request.setAttribute("today", new Date());

 RequestDispatcher rd =

getServletContext().getRequestDispatcher("/date.jsp");

 rd.forward(request, response);

1

2

3

4

5

 }

}

Listing 10-32 DateServlet Class That Provides the today Attribute for the date.jsp Page

Now we just restart the application, and the �irst page will now display Today is 06/07/2021, and
you will see the date on your system when the code is run.

If you think writing Java web applications is cumbersome, you are quite right. Pure Java is quite tedious
for such a task. Professional Java web applications are usually written by using frameworks that make the
job of creating pages and linking them to the backend easily. Even more, nowadays the tendency is to create
interfaces in JavaScript using powerful JavaScript frameworks like Angular and React; using advanced CSS4,
many UI Designs can now also be done 100% in CSS3 or CSS4 and communicate to a Java backend
application hosted on an enterprise server using Web Service calls, usually REST. Anyway, look it up if you
are curious; the subject is vast, but frameworks such as Spring make it quite easy to set your environment
up and start developing. Just don’t fall into the trap of using a framework without understanding its
fundamentals.

Summary
This chapter has covered important development tools and techniques, the classes in JDK that provide
support for them, and important Java libraries that you will must likely end up working with that could
make your development job practical and pleasant. The JDK has never shined when it comes to GUI support,
but JavaFX is quite an evolution from AWT and Swing and just might have a future. A complete list of topics
from this chapter is here:

how to write an interactive console application
how to write an interactive application with a Swing interface
the basics of JavaFX architecture
how to write an interactive application with a JavaFX interface
how to internationalize your application
how to write a web application using an embedded server
what a servlet is
what a JSP Scriptlet is
how to use taglibs to write JSP pages
how to deploy a Java web application to Apache Tomcat

Footnotes
The Oracle extensive Swing tutorial is available at Oracle, “The Java Tutorials,”

https://docs.oracle.com/javase/tutorial/uiswing/examples/layout/index.html, accessed October 15, 2021.

SWT is an open-source widget toolkit for Java designed to provide ef�icient, portable access to the user-interface facilities of the operating

systems on which it is implemented. You can learn more about it on the of�icial site at Eclipse, “SWT: The Standard Widget Toolkit,”
https://www.eclipse.org/swt, accessed October 15, 2021.

It was mentioned that the root class for all Java FX components is named Node, so instead of components, Java FX components will be referred

as nodes in this section.

This blog entry explains the whole thing: see Java Magazine, “Transition from Java EE to Jakarta EE,”

https://blogs.oracle.com/javamagazine/transition-from-java-ee-to-jakarta-ee, accessed October 15, 2021.

See the of�icial project page at Spring, https://spring.io/projects/spring-boot, accessed October 15, 2021.

https://docs.oracle.com/javase/tutorial/uiswing/examples/layout/index.html
https://www.eclipse.org/swt
https://blogs.oracle.com/javamagazine/transition-from-java-ee-to-jakarta-ee
https://spring.io/projects/spring-boot

(1)

© Iuliana Cosmina 2022
I. Cosmina, Java 17 for Absolute Beginners
https://doi.org/10.1007/978-1-4842-7080-6_11

11. Working With Files

Iuliana Cosmina1

Edinburgh, UK

One of the most important functions in software is information organizing and storage, with the goal of
using it and sharing it. Information is written on paper and stored in organized cabinets in real life where it
can be retrieved from. Software applications do something similar. Information is written in �iles, �iles are
organized in directories, and eventually when in even more complex structures, named databases. Java
provides classes to read information from �iles and databases and classes to write �iles and write
information to databases. In previous chapters databases have been mentioned, and in Chapter 9 a simple
example using a Derby in-memory database was introduced to show you how heavy dependencies like
databases can be mocked, to allow unit testing. This chapter is not about using databases, because writing
Java applications to use databases would require extra software to be installed. Instead, the chapter focuses
on reading and writing �iles, and in how many ways this can be done.

Java IO and NIO APIs
Before starting to show you how to read or write �iles we need to show you how access them from the code,
how to check if they exist, check for their size and list their properties, and so on. The core packages for �ile
handling in Java are named java.io and java.nio.1 The package names give a pretty good hint about
the components they contain. java.io is pretty much an acronym for Java Input/Output and groups
together component designed to facilitate input and output operations for accessing the �ile system through
data streams and serialization. java.nio is an acronym for Java Nonblocking Input/Output. This package
was introduced in version 1.4 and is a collection of Java programming language APIs that offer features for
intensive I/O operations. A package named java.nio.file was added in JDK 1.7 containing a collection
of utility classes providing comprehensive support for �ile I/O and for accessing the �ile system.

The main big difference between Java NIO and IO is that IO is stream oriented, where NIO is buffer
oriented. What this means is with the old Java IO API, �iles are read one or more bytes at the time from a
stream. Bytes are not cached anywhere and stream traversal is unidirectional. So once the stream is
exhausted, there is no way to traverse it again. If you need to walk the stream in both directions, data must
be stored in a buffer �irst.

With the Java NIO, the data is read directly into a buffer, which means bytes are cached in a web browser
and the browser supports bidirectional operations. This gives more �lexibility during processing, but extra
checks are required to make sure the buffer contains all the data needed for processing.

The second main difference is that Java IO operations are blocking. Once a method to read or write a �ile
was called, the thread is blocked until there is no more data to read or the data was fully written.

Java NIO operations are nonblocking. A thread can request data from a resource (e.g., a �ile) via an open
channel and only get what is currently available, or nothing at all, if no data is currently available. Rather
than waiting until some data is there, the thread can go ahead and do something else, and later check to see
if the data buffer was populated.

The third difference is not so much a difference but something that Java NIO has extra: selectors. These
components allow a thread to monitor multiple input channels, and select for processing only the ones that
have available data. By comparison, you cannot have that with the classic Java IO, because a thread blocks
until a �ile operation is done.

Depending on the problem you are trying to solve, you can use one or the other, but it all starts with a
�ile handler.

https://doi.org/10.1007/978-1-4842-7080-6_11

File Handlers
The most important class when working with �iles in Java is the java.io.File class. This class is an
abstract representation of a �ile and directory pathname. Instances of this class are named �ile handlers
because they allow developers to handle �iles and directories in the Java code using references of this type,
instead of complete path names. A File instance can be created by using different arguments.

The most simple way is to use the constructor that receives as an argument a String value containing the
absolute �ile pathname. In the code sample in Listing 11-1, the printFileStats(..) method is used to
print �ile details.

package com.apress.bgn.eleven.io;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import java.io.File;

public class Main {

 private static final Logger log = LoggerFactory.getLogger(Main.class);

 public static void main(String... args) {

 // replace [workspace] with your workspace path

 var file = new File("[workspace]/java-17-for-absolute-

beginners/README.adoc");

 printFileStats(file);

 }

 private static void printFileStats(File f) {

 if (f.exists()) {

 log.info("File Details:");

 log.info("Type : {}", f.isFile() ? "file" : "directory or

symlink");

 log.info("Location :{}", f.getAbsolutePath());

 log.info("Parent :{}", f.getParent());

 log.info("Name : {}", f.getName());

 double kilobytes = f.length() / (double)1024;

 log.info("Size : {} ", kilobytes);

 log.info("Is Hidden : {}", f.isHidden());

 log.info("Is Readable? : {}", f.canRead());

 log.info("Is Writable? : {}", f.canWrite());

 }

 }

}

Listing 11-1 Printing File Details

In the previous example the �ile handler instance is created by providing the absolute �ile pathname on
my computer. If you want to run the previous code on your computer, you must provide a pathname to a �ile
on your computer. If you are using Windows, keep in mind that the pathname will contain the “\” character
that is a special character in Java and must be escaped by doubling it.

The printFileStats(..) method makes use of a lot of methods that can be called on a �ile handler.
The full list of methods that you can call is bigger and you can see them all in the of�icial API documentation
here:
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/io/File.ht

ml. The methods are explained in the following list:

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/io/File.html

isFile() returns true if the pathname points to a �ile and false if the pathname points to a directory
or a symlink (a special type of �ile that exists with the only purpose to link to another �ile and can be quite
useful when you want to shorten the pathname to a �ile and incredibly useful on Windows where the
pathname length limit is of 256 characters). In the previous code sample the method returns true, and
the log prints:

INFO c.a.b.e.Main - Type : file

If we want to see if the method works for a directory, just delete the �ile name from the pathname.
File file = new File("/[workspace]/java-17-for-absolute-beginners /"); And

the log prints

INFO c.a.b.e.Main - Type : directory or symlink

getAbsolutePath() returns the absolute pathname to a �ile or a directory. When creating a �ile
handler, the absolute pathname is not always needed, but if you need to use it later in the code or make
sure the relative path was resolved correctly, this method is just what you need. The following piece of
code creates a �ile handler to a �ile in the resources directory by using the path relative to the root
project directory (in our case the java-17-for-absolute-beginners directory).

File d = new File("chapter11/read-write-file/src/main/resources/input/");

The getAbsolutePath() method returns the full pathname, which is printed by the log statement as:

INFO c.a.b.e.Main - Location :/[workspace]/java-17-for-absolute-

beginners/chapter11/read-write-file/src/main/resources/input

The Java File class is quite powerful; it can be used to point to a shared �ile on another computer. There
is a special constructor for that which receives an argument of type java.net.URI, where URI stands for
Uniform Resource Identi�ier . To test this constructor, just select a �ile on your computer and open it in a
web browser, so you can get its URI from the browser address bar. The code in Listing 11-2 depicts the File
class being instantiates using a local URI.

package com.apress.bgn.eleven.io;

import java.net.URI;

import java.net.URISyntaxException;

// other imports omitted

public class Main {

 public static void main(String... args) {

 try{

 // replace [workspace] with your workspace path

 var localUri = new URI("file:///[workspace]/java-17-for-

absolute-beginners/README.adoc");

 var localFile = new File (localUri);

 printFileStats(localFile);

 } catch (URISyntaxException use) {

 log.error("Malformed URI, no file there", use);

 }

 }

}

Listing 11-2 Printing File Details for a File Instance Create Using an URI

Because the URI might have an incorrect pre�ix or not exactly point to a �ile, the URI constructor is
declared to throw a java.net.URISyntaxException, so in the code you have to handle this as well. In

the case of a URI being used to create a �ile handler, the getAbsolutePath() method returns the absolute
pathname of the �ile, on the computer and drive where the �ile is.

getParent() returns the absolute path to the directory containing the �ile, because hierarchically, a �ile
cannot have another �ile as a parent.
getName() returns the �ile name. The �ile name contains the extension as the suf�ix after "." is called,
which is used to indicate they type of �ile and what is intended to be used for.
length() returns the length of the �ile in bytes. This method does not work for directories, as directories
can contain �iles restricted to the user executing the program and exceptions might be thrown. So if you
ever need the size of a directory, you have to write the code yourself.
isHidden() returns true is the �ile is not visible to the current user, returns false otherwise. On a
macOs/ Linux system, �iles with names starting with "." are hidden, so if we want to see that method
returning true we have to create a handler to one of the system con�iguration �iles, such as
.gitconfig. So calling the printFileStats(..) on a �ile handler created using a pathname to a
hidden �ile results in an output similar to the one in Listing 11-3:

INFO c.a.b.e.Main - File Details:

INFO c.a.b.e.Main - Type : file

INFO c.a.b.e.Main - Location :/Users/[userDir]/.gitconfig

INFO c.a.b.e.Main - Parent :/Users/[userDir]

INFO c.a.b.e.Main - Name : .gitconfig

INFO c.a.b.e.Main - Size : 3.865234375

INFO c.a.b.e.Main - Is Hidden : true

INFO c.a.b.e.Main - Is Readable? : true

INFO c.a.b.e.Main - Is Writable? : true

Listing 11-3 Printing File Details for a Hidden File

canRead() and canWrite() are obvious, as �iles can be secured from normal users. Both methods
return true when the user has the speci�ic right on the �ile and false otherwise.

File handlers can be created for pathnames pointing to directories, which means there there are
available methods to call that are speci�ic only to directories. The most common thing to do with a directory
is to list its contents. The list() method returns a String array, containing the names of the �iles (and
directories) under this directory. Lambda expressions makes printing the items in a directory pretty
practical.

var d = new File("/[workspace]/java-17-for-absolute-beginners");

Arrays.stream(Objects.requireNonNull(d.list())).forEach(ff -> log.info("\t

File Name : {}", ff));

Files names are not really useful in most cases; having a File array with �ile handlers to each of them
would be better. That is why listFiles() method was added in version 1.2.

Arrays.stream(Objects.requireNonNull(d.listFiles())).forEach(ff →

log.info("\t File : {}", ff.getAbsolutePath()));

This method has more than one form, because it can be used to �ilter the �iles and return �ile handlers
only for �iles or directories matching a certain requirement, when called with an instance of FileFilter.
The code sample in Listing 11-4 �ilters the entries under the directories and keeps only the directories with
names that start with 'chapter'.

package com.apress.bgn.eleven.io;

import java.io.File;

import java.io.FileFilter;

// other imports omitted

public class Main {

 public static void main(String... args) {

 // replace [workspace] with your workspace path

 var d = new File("/[workspace]/java-17-for-absolute-beginners");

 Arrays.stream(d.listFiles(new FileFilter() {

 @Override

 public boolean accept(File childFile) {

 return childFile.isDirectory() &&

childFile.getName().startsWith("chapter");

 }

 })).forEach(ff -> log.info("Chapter Source : {}", ff.getName()));

 }

}

Listing 11-4 Filtering Content of a Directory Using a FileFilter Instance

The previous code sample is written in expanded form to make it obvious that you should provide a
concrete implementation for the accept(..) method . Using lambda expressions, the previous code can
be simpli�ied and even made less prone to exceptions being thrown.

Arrays.stream(

 Objects.requireNonNull(d.listFiles(

 childFile -> childFile.isDirectory() &&

childFile.getName().startsWith("chapter")))

).forEach(ff -> log.info("Chapter Source : {}", ff.getName())

);

In the previous example we implemented the accept(..) to �ilter by �ile type and name, but the �ilter
can involve anything. When the �ilter you need strictly involves the �ile name, you can reduce use the other
version of the method, which receives a FilenameFilter instance as argument.

Arrays.stream(Objects.requireNonNull(d.listFiles(new FilenameFilter() {

 @Override

 public boolean accept(File dir, String name) {

 return dir.getName().startsWith("chapter");

 }

}))).forEach(ff -> log.info("\t File : {}", ff.getAbsolutePath()));

Aside from listing properties of �ile, a �ile handler can also be used to create a �ile. To create a �ile the
createNewFile() method must be called after creating a �ile handler with a speci�ic pathname, as shown
in Listing 11-5.

package com.apress.bgn.eleven.io;

import java.io.IOException;

// other imports omitted

public class Main {

 public static void main(String... args) {

 var created = new File(

 "chapter11/read-write-

file/src/main/resources/output/created.txt");

 if (!created.exists()) {

 try {

 created.createNewFile();

 } catch (IOException e) {

 log.error("Could not create file.", e);

 }

 }

 }

}

Listing 11-5 Creating a File

The exists() method returns true when the �ile hander is associated with a concrete �ile or directory,
and false otherwise. It can be used to test if the �ile we are trying to create is already there. If the �ile
exists, the method has no effect. If the user does not have proper rights to create the �ile at the speci�ied
pathname, a SecurityException will be thrown. In certain cases we might need to create a �ile that
needs only to be used during the execution if the program. This means we either have to create the �ile and
delete it explicitly, or we can create a temporary �ile. Temporary �iles are created by calling
createTempFile(prefix, suffix) and they are created in the temporary directory de�ined for the
operating system. The pre�ix argument is of type String and the created �ile will have the name starting with
its value. The suf�ix argument is of type String as well and it can be used to specify an extension for the �ile.
The rest of the �ile name is generated by the operating system. The code to create a temporary �ile is
depicted in Listing 11-6.

package com.apress.bgn.eleven.io;

import java.io.IOException;

// other imports omitted

public class Main {

 public static void main(String... args) {

 try {

 File temp = File.createTempFile("java_bgn_", ".tmp");

 log.info("File created.txt at: {}", temp.getAbsolutePath());

 temp.deleteOnExit();

 } catch (IOException e) {

 log.error("Could not create temporary file.", e);

 }

 }

}

Listing 11-6 Creating a Temporary File

Files in the temporary directory of an operating system are periodically deleted by the operating system,
but if you want to make sure it will be deleted, you can explicitly call deleteOnExit() on the �ile handler
for the temporary �ile. In the previous code sample the absolute path to the �ile is printed to show the exact
location where the temporary �ile was created and on a macOS system the full pathname looks very similar
to this:

/var/folders/gg/nm_cb2lx72q1lz7xwwdh7tnc0000gn/T/java_bgn_14652264510049064218

A �ile can also be renamed using a Java �ile handler, there is a method for that called rename(f) that is
called with a �ile handler argument, pointing to the location and desired name that the �ile should have. The
method returns true if the renaming succeeded and false otherwise. The code for doing this is depicted in
Listing 11-7.

package com.apress.bgn.eleven.io;

import java.io.IOException;

// other imports omitted

public class Main {

 public static void main(String... args) {

 var file = new File(

 "chapter11/read-write-

file/src/main/resources/output/created.txt");

 var renamed = new File(

 "chapter11/read-write-

file/src/main/resources/output/renamed.txt");

 boolean result = file.renameTo(renamed);

 log.info("Renaming succeeded? : {} ", result);

 }

}

Listing 11-7 Renaming a File

Most methods in the class File throw IOException, because manipulating a �ile can fail because of a
hardware problem, or because of an operating system problem. This type of exception is a checked
exceptions and developers using �ile handlers are forced to catch and treat this type of exceptions.

Methods that require special rights for accessing a �ile throw SecurityException . This type extends
RuntimeException so exceptions are not checked. They become obvious when the application is running.

Now that all the basis of working with �ile handlers have been covered, it is time for the next section.

Path Handlers
The java.nio.file.Path interface was introduced in Java 1.7 together with utility classes
java.nio.file.Files and java.nio.file.Paths to provide new and more practical ways to work
with �iles. A Path instance may be used to locate a �ile in a �ile system, and thus represents a system
dependent �ile path. Path instances are more practical than File as they can provide methods to access
components of a path, to combine paths, and compare paths. Path instances cannot be directly created,
because an interface cannot be instantiated, but the interface provides static utility methods to create them,
and so does the class Paths. Use whichever you want depending on your situation.

The simplest way to create a Path instance is to start with a �ile handler and call
Paths.get(fileURI), as shown in Listing 11-8.

package com.apress.bgn.eleven.io;

// other imports omitted

import java.io.File;

import java.nio.file.Path;

import java.nio.file.Paths;

public class PathDemo {

 private static final Logger log =

LoggerFactory.getLogger(PathDemo.class);

 public static void main(String... args) {

 // replace [workspace] with your workspace path

 File file = new File(

 "/[workspace]/java-17-for-absolute-beginners/README.adoc");

 Path path = Paths.get(file.toURI());

 log.info(path.toString());

 }

}

Listing 11-8 Creating a Path Instance

Starting with Java 11, Paths.get(file.toURI()) can be replaced with
Path.of(file.toURI()). The other way to create a Path instance is to use the other form of the
Paths.get(..), which receives as arguments, multiple pieces of the path.

Path composedPath = Paths.get("/[workspace]",

 "java-17-for-absolute-beginners",

 "README.adoc");

log.info(composedPath.toString());

Both paths created previously point to the same location, thus if compared with each other using the
compareTo(..) method (because Path extends interface Comparable<Path>, the result returned will
be 0(zero) which means the paths are equal.

log.info("Is the same path? : {} ", path.compareTo(composedPath) ==0 ? "yes"

: "no");

// prints : INFO com.apress.bgn.eleven.PathDemo - Is the same path? : yes

In the next code sample, a few Path methods are called on the path instance. The code is depicted in
Listing 11-9.

package com.apress.bgn.eleven.io;

// import section omitted

public class PathDemo {

 private static final Logger log =

LoggerFactory.getLogger(PathDemo.class);

 public static void main(String... args) {

 var path = Paths.get("/[workspace]",

 "java-17-for-absolute-beginners",

 "README.adoc");

 printPathDetails(path);

 }

 private static void printPathDetails(Path path) {

 log.info("Location :{}", path.toAbsolutePath());

 log.info("Is Absolute? : {}", path.isAbsolute());

 log.info("Parent :{}", path.getParent());

 log.info("Root :{}", path.getRoot());

 log.info("FileName : {}", path.getFileName());

 log.info("FileSystem : {}", path.getFileSystem());

 log.info("IsFileReadOnly : {}", path.getFileSystem().isReadOnly());

 }

}

Listing 11-9 Inspecting Path Details

The following list explains each method and its outcome:

toAbsolutePath() returns a Path instance representing the absolute path of this path. When called on
the path instance created previously, as it is already absolute, the method will just return the path object
the method is called on. Also, calling path.isAbsolute() will return true.
getParent() returns the parent Path instance. Calling this method on the path instance will print:
INFO com.apress.bgn.eleven.PathDemo - Parent :/[workspace]/java-17-for-

absolute-beginners

getRoot() returns the root component of this path as a Path instance. On a Linux or macOS system
prints "/", on Windows something like "C:\".
getFileName() returns the name of the �ile or directory denoted by this path as a Path instance;
basically, the path is split by the system path separator, and the most far away from the root element is
returned.

getFileSystem() returns the �ile system that created this object, for macOS it is an instance of type
sun.nio.fs.MacOSXFileSystem.

Another useful Path method is resolve(..). This method takes a String instance that is a
representation of a path and resolves it against the Path instance it is called on. This means that path
separators are added to combine the two paths according to the operating system the program runs on and
a Path instance will be returned. This is depicted in Listing 11-10.

package com.apress.bgn.eleven.io;

// import section omitted

public class PathDemo {

 private static final Logger log =

LoggerFactory.getLogger(PathDemo.class);

 public static void main(String... args) {

 // replace [workspace] with your workspace path

 var chapterPath = Paths.get("/[workspace]",

 "java-17-for-absolute-beginners/chapter11");

 Path filePath = chapterPath.resolve(

 "read-write-file/src/main/resources/input/data.txt");

 log.info("Resolved Path :{}", filePath.toAbsolutePath());

 }

}

Listing 11-10 Resolving a Path Instance

The preceding sample code will print the following:

INFO c.a.b.e.PathDemo - Resolved Path :/[workspace]/java-17-for-absolute-

beginners/chapter11/read-write-file/src/main/resources/input/data.txt

Using Path instances , writing code that manages �iles or retrieves their properties becomes easier to
write in combination with Files utility methods. The code sample in Listing 11-11 makes use of a few of
these methods to print properties of a �ile, in the same way we did previously using a File handler.

package com.apress.bgn.eleven.io;

// import section omitted

public class PathDemo {

 private static final Logger log =

LoggerFactory.getLogger(PathDemo.class);

 public static void main(String... args) {

 try {

 var outputPath = FileSystems.getDefault()

 .getPath("/[workspace]" +

 "java-17-for-absolute-beginners/chapter11/read-

write-file/src/main/resources/output/sample");

 Path dirPath = Files.createDirectory(outputPath);

 printPathStats(dirPath);

 } catch (FileAlreadyExistsException faee) {

 log.error("Directory already exists.", faee);

 } catch (IOException e) {

 log.error("Could not create directory.", e);

 }

 }

 private static void printPathStats(Path path) {

 if (Files.exists(path)) {

 log.info("Path Details:");

 log.info("Type: {}", Files.isDirectory(path) ? "yes" : "no");

 log.info("Type: {}", Files.isRegularFile(path) ? "yes" : "no");

 log.info("Type: {}", Files.isSymbolicLink(path) ? "yes" : "no");

 log.info("Location :{}", path.toAbsolutePath());

 log.info("Parent :{}", path.getParent());

 log.info("Name : {}", path.getFileName());

 try {

 double kilobytes = Files.size(path) / (double)1024;

 log.info("Size : {} ", kilobytes);

 log.info("Is Hidden: {}", Files.isHidden(path) ? "yes" :

"no");

 } catch (IOException e) {

 log.error("Could not access file.", e);

 }

 log.info("Is Readable: {}", Files.isReadable(path) ? "yes" :

"no");

 log.info("Is Writable: {}", Files.isWritable(path) ? "yes" :

"no");

 }

 }

}

Listing 11-11 Printing a Path Details

As you can see, the Files class provides the same functionality as the File class. This class consists
exclusively of static methods that operate on �iles, directories, or other types of �iles. It was introduced in
Java 1.7 and its advantage is the clearer syntax. The power and practicality of using java.nio classes is
more obvious when managing �iles, creating them, renaming them, and deleting them and when reading and
writing them. The code sample in Listing 11-12 shows a �ile being created, renamed, and deleted using NIO
classes.

package com.apress.bgn.eleven.io;

// import section omitted

import java.nio.FileAlreadyExistsException;

public class PathDemo {

 private static final Logger log =

LoggerFactory.getLogger(PathDemo.class);

 public static void main(String... args) {

 Path filePath = chapterPath.resolve(

 "read-write-file/src/main/resources/input/data.txt");

 Path copyFilePath =

Paths.get(outputPath.toAbsolutePath().toString(), "data.adoc");

 try {

 Files.copy(filePath, copyFilePath);

 log.info("Exists? : {}", Files.exists(copyFilePath)? "yes":

"no");

 log.info("File copied to: {}", copyFilePath.toAbsolutePath());

 } catch (FileAlreadyExistsException faee) {

 log.error("File already exists.", faee);

 } catch (IOException e) {

 log.error("Could not copy file.", e);

 }

 Path movedFilePath =

Paths.get(outputPath.toAbsolutePath().toString(), "copy-data.adoc");

 try {

 Files.move(copyFilePath, movedFilePath);

 log.info("File moved to: {}", movedFilePath.toAbsolutePath());

 Files.deleteIfExists(copyFilePath);

 } catch (FileAlreadyExistsException faee) {

 log.error("File already exists.", faee);

 } catch (IOException e) {

 log.error("Could not move file.", e);

 }

 }

}

Listing 11-12 Managing Files Using NIO Classes

Notice the FileAlreadyExistsException, an exception type added in Java 1.7 that extends
IOException (indirectly through the FileSystemException) and is used to provide more data about
the situation that determined the failure if a �ile operation. It is thown by methods
createDirectory(..), createFile(..), and move(..).

The delete(..) method that is not used in the previous code sample throws a
java.nio.file.NoSuchFileException if the �ile to be deleted does not exist. To avoid an exception
being thrown, in the previous code sample deleteIfExists(..) is used.

The list of methods is even bigger, but since the size of this chapter is limited, you can go ahead and
check it out yourself in the of�icial Javadoc API.

Reading Files
Files are a succession of bits on a hard drive. A File handler does not provide methods to read the content
of a �ile, but a group of other classes can be used to do so, but all of them are created using a �ile handler
instance. Depending on what is actually needed to be done with the contents of a �ile, there is more than one
way to read �ile contents in Java. There are a lot of ways and this section will cover the most common.

Using Scanner to Read Files
The Scanner class was used previously to read input from the command line. System.in can be replaced
with a File and Scanner methods can be used to read �ile contents, as depicted in Listing 11-13.

package com.apress.bgn.eleven.io;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import java.io.File;

import java.io.IOException;

import java.nio.charset.StandardCharsets;

import java.nio.file.Paths;

import java.util.Scanner;

public class ScannerDemo {

 private static final Logger log =

LoggerFactory.getLogger(ScannerDemo.class);

 public static void main(String... args) {

 try {

 var scanner = new Scanner(new File("chapter11/read-write-

file/src/main/resources/input/data.txt"));

 var content = "";

 while (scanner.hasNextLine()) {

 content += scanner.nextLine() + "\n";

 }

 scanner.close();

 log.info("Read with Scanner --> {}", content);

 } catch (IOException e) {

 log.error("Something went wrong! ", e);

 }

 }

}

Listing 11-13 Using Scanner to Read a File

Instead of a �ile, a java.nio.file.Path instance can be used as well:

scanner = new Scanner(Paths.get(new File("chapter11/read-write-

file/src/main/resources/input/data.txt").toURI()),

StandardCharsets.UTF_8.name());

Files can be written using different sets of characters, referred to in Java by
java.nio.charset.Charset instances. To ensure they are read correctly, it is a good practice to read
them using the same charset. There is a Scanner constructor, which receives a charset name as an argument.
The StandardCharsets.UTF_8.name() method is called to extract the name of the UTF-8 charset.

Using Files Utility Methods to Read Files
The �irst code sample in Listing 11-14 shows the simplest way to read a �ile.

package com.apress.bgn.eleven.io;

// import section omitted

public class FilesReadDemo {

 private static final Logger log =

LoggerFactory.getLogger(FilesReadDemo.class);

 public static void main(String... args) {

 try {

 var file= new File("chapter11/read-write-

file/src/main/resources/input/data.txt");

 var content = new

String(Files.readAllBytes(Paths.get(file.toURI())));

 log.info("Read with Files.readAllBytes --> {}", content);

 } catch (IOException e) {

 log.info("Something went wrong! ", e);

 }

 }

}

Listing 11-14 The Simplest Way to Read a File

This approach works well when the �ile size can be approximated (the �ile size can be estimated and is
relatively small) and it would not be a problem storing it into a String object.

The advantage of using Files.readAllBytes(..) is that no loop is needed and we do not have to
construct the String value line by line, because this method just reads all the bytes in the �iles that can be
given as an argument to the String constructor. The disadvantage is that no Charset is used, so the text
value might not be the one we expect. There is a way to overcome this, by calling

Files.readAllLines(..) that returns the �ile content as a list of String values, and has two forms
one of them declaring a Charset as a parameter. This version of reading a �ile is depicted in Listing 11-15.

package com.apress.bgn.eleven.io;

// import section omitted

public class FilesReadDemo {

 private static final Logger log =

LoggerFactory.getLogger(FilesReadDemo.class);

 public static void main(String... args) {

 try {

 var file= new File("chapter11/read-write-

file/src/main/resources/input/data.txt");

 List<String> lyricList =

Files.readAllLines(Paths.get(file.toURI()), StandardCharsets.UTF_8);

 lyricList.forEach(System.out::println);

 } catch (IOException e) {

 log.info("Something went wrong! ", e);

 }

 }

}

Listing 11-15 A Simple Way to Read a File Specifying a Charset

But what if we do not need a List<String>, but the one String instance? In Java 11 a method was
introduced for that and is called readString(..). The code sample using it is shown in Listing 11-16.

package com.apress.bgn.eleven.io;

// import section omitted

public class FilesReadDemo {

 private static final Logger log =

LoggerFactory.getLogger(FilesReadDemo.class);

 public static void main(String... args) {

 try {

 var content = Files.readString(Paths.get(file.toURI()),

StandardCharsets.UTF_8);

 log.info("Read with Files.readString --> {}", content);

 } catch (IOException e) {

 log.info("Something went wrong! ", e);

 }

 }

}

Listing 11-16 The Simplest Way to Read a File Specifying a Charset

Using Readers to Read Files
Before the Files class and its fancy methods were introduced, there were other ways to read �ilesThe fancy
methods are also not designed for reading big �iles, or for reading only parts of a �ile. Let’s take a trip to the
past and slowly analyze how things have evolved.

Before Java 1.6 to read a �ile line by line, you would have to write a contraption such as the one in Listing
11-17.

package com.apress.bgn.eleven.io;

import java.io.BufferedReader;

import java.io.FileReader;

// other imports omitted

public class ReadersDemo {

 private static final Logger log =

LoggerFactory.getLogger(ReadersDemo.class);

 public static void main(String... args) {

 BufferedReader reader = null;

 try {

 reader = new BufferedReader(new FileReader(new

File("chapter11/read-write-file/src/main/resources/input/data.txt")));

 StringBuilder sb = new StringBuilder();

 String line;

 while ((line = reader.readLine()) != null) {

 sb.append(line).append("\n");

 }

 log.info("Read with BufferedReader --> {}", sb.toString());

 } catch (Exception e) {

 log.error("File could not be read! ", e);

 } finally {

 if (reader != null) {

 try {

 reader.close();

 } catch (IOException ioe) {

 log.error("Something went wrong! ", ioe);

 }

 }

 }

 }

}

Listing 11-17 Reading a File Line By Line, Before Java 1.6

Whoa, what is that, right? After Java 1.6 the syntax was simpli�ied a little, but the biggest changes came in
1.7. Before Java 1.7 if you wanted to read a �ile line by line, this is pretty much the code you had to write:

You had to create a File handler.
Then you needed to wrap the �ile handler into a FileReader. This type of instance could do the job of
reading, but only in chunks of char[], which is not very useful when you need the actual text.
The FileReader instance needs to be wrapped into an instance of BufferedReader that provides this
functionality by reading the characters in an internal buffer. The way it works is that
reader.readLine() is called until there is nothing more to read because the end of the �ile was
reached, when this method returns null.
At the end of the reading reader.close() needed to be called explictly otherwise a lock might be kept
on the �ile and it might become unreadable until a restart.

In Java 1.7 a lot of changes were introduced to reduce the boilerplate needed to work with �iles. One of
those things was that all classes used to access �ile contents and that could keep a lock on the �ile were
enriched by being declared to implement the java.io.Closeable interface, which marks resources of
these types as closable and a close() method is invoked to release resources transparently by the JVM
before execution ends. Also, in Java 7, the try-with-resources statement was introduced. Making use of
all these features, the previous code can be written as depicted in Listing 11-18.

package com.apress.bgn.eleven.io;

// other imports omitted

public class ReadersDemo {

 private static final Logger log =

LoggerFactory.getLogger(ReadersDemo.class);

 public static void main(String... args) {

 try (var br = new BufferedReader(new FileReader(new

File("chapter11/read-write-file/src/main/resources/input/data.txt")))){

 StringBuilder sb = new StringBuilder();

 String line;

 while ((line = br.readLine()) != null) {

 sb.append(line).append("\n");

 }

 log.info("Read with BufferedReader --> {}", sb.toString());

 } catch (Exception e) {

 log.info("Something went wrong! ", e);

 }

 }

}

Listing 11-18 Reading a File Line By Line, Starting with Java 1.7

The code can be further simpli�ied as the FileReader can take the absolute path to a �ile as String as
a parameter. But the code can not be made to take encoding into consideration. This became possible in Java
1.8, when a constructor was introduced for the FileReader class that accepts a Charset argument. Still,
we have nested constructor calls in the previous example, and it is quite ugly. Here is where Java 8 comes to
the rescue, by introducing the Files.newBufferedReader(Path) and the
Files.newBufferedReader(Path, Charset) method.

So the preceding code can be written as shown in Listing 11-19.

package com.apress.bgn.eleven.io;

// other imports omitted

public class ReadersDemo {

 private static final Logger log =

LoggerFactory.getLogger(ReadersDemo.class);

 public static void main(String... args) {

 File file = new File("chapter11/read-write-

file/src/main/resources/input/data.txt");

 try (var br = Files.newBufferedReader(file.toPath(),

StandardCharsets.UTF_8)){

 StringBuilder sb = new StringBuilder();

 String line;

 while ((line = br.readLine()) != null) {

 sb.append(line).append("\n");

 }

 log.info("Read with BufferedReader --> {}", sb.toString());

 } catch (Exception e) {

 log.info("Something went wrong! ", e);

 }

 }

}

Listing 11-19 Reading a File Line By Line, Taking Encoding Into Consideration Starting with Java 1.8

If it is known that the size of the �ile is manageable, and we are interested no in just logging the contents,
but saving the individual lines for futher processing, the easiest way to do this is by using
Files.readAllLines(..) method combined with lambda expressions. Streams can be added in the
mix, so the lines can be �iltered or processed on the spot as shown here:

List<String> dataList = Files.readAllLines(Paths.get(file.toURI()),

StandardCharsets.UTF_8)

 .stream()

 .filter(line -> line!= null && !line.isBlank())

 .map(line -> line.toUpperCase())

 .collect(Collectors.toList());

Or we can write it another way, using the Files.lines(..) method, also introduced in Java 1.8, and
get all contents as a stream directly:

List<String> dataList = Files.lines(Paths.get(file.toURI()),

StandardCharsets.UTF_8)

 .filter(line -> line!= null && !line.isBlank())

 .map(line -> line.toUpperCase())

 .collect(Collectors.toList());

Anyway, back to �ile readers. The BufferedReader class if a member of a class group that extend the
Reader class. The Reader class is an abstract class used for reading characters streams and is part of the
java.io package. A simpli�ied hierarchy showing the most commonly used implementations is depicted in
Figure 11-1.

Figure 11-1 Reader class hierarchy (as shown in IntelliJ IDEA)

Character streams can have different sources, �iles being the most common. They provide sequential
access to data stored in the �ile. The BufferedReader does not provide support for character encoding,
but a BufferedReader is based on another Reader instance. And as you have noticed in the previous
examples, a FileReader instance was used as argument when instantiating a BufferedReader, and
FileReader was modi�ied in Java 1.8 to support character encoding. Before Java 1.8, to read from a �ile and
taking character encoding into consideration, an InputStreamReader instance was used as depicted in
Listing 11-20.

package com.apress.bgn.eleven.io;

import java.io.FileInputStream;

import java.io.InputStreamReader;

// other imports omitted

public class ReadersDemo {

 private static final Logger log =

LoggerFactory.getLogger(ReadersDemo.class);

 public static void main(String... args) {

 File file = new File("chapter11/read-write-

file/src/main/resources/input/data.txt");

 try (var br = new BufferedReader(new InputStreamReader(new

FileInputStream(file), StandardCharsets.UTF_8))){

 StringBuilder sb = new StringBuilder();

 String line;

 while ((line = br.readLine()) != null) {

 sb.append(line).append("\n");

 }

 log.info("Read with

BufferedReader(InputStreamReader(FileInputStream(..))) --> {}",

sb.toString());

 } catch (Exception e) {

 log.info("Something went wrong! ", e);

 }

 }

}

Listing 11-20 Reading a File Line By Line, Taking Encoding Into Consideration Before Java 1.8

In Java 11, the Reader class was enriched with the nullReader() method, which returns a Reader
instance that does nothing. This was requested by developers for testing purposes and is nothing else but a
pseudo-Reader implementation.

Using InputStream to Read Files
Classes in the Reader family are advanced classes for reading data as text, but technically speaking �iles are
just a sequence of bytes, so these classes are themselves wrappers around classes in a family of classes used
for reading byte streams. This becomes quite obvious when trying to use the proper character encoding, and
when reading text (as shown at the end of the previous section) using the BufferedReader, as the
InputStreamReader instance given as argument is based on a java.io.FileInputStream instance,
a type that is a subclass of java.io.InputStream.

The root class of this hierarchy is java.io.InputStream. A simpli�ied hierarchy showing the most
commonly used implementations is depicted in Figure 11-2.

Figure 11-2 InputStream class hierarchy (as shown in IntelliJ IDEA)

The class BufferedInputStream is the equivalent of BufferedReader for reading streams of
bytes. The System.in that we previously used to read user data from the console is of this type, and the
Scanner instance converts the bytes from its buffer into user understandable data. When the data we are
interested in is not text that was stored using Unicode conventions, but raw numeric data (binary �iles such
as images, media �iles, PDFs, etc.) classes for using streams of bytes are more suitable. Just for the purpose of
showing you how it’s done, we’ll read the contents of the data.txt �ile using FileInputStream. The
code is depicted in Listing 11-21.

package com.apress.bgn.eleven.io;

import java.io.FileInputStream;

// other imports omitted

public class FileInputStreamReadingDemo {

 private static final Logger log =

LoggerFactory.getLogger(FileInputStreamReadingDemo.class);

 public static void main(String... args) {

 File file = new File("chapter11/read-write-

file/src/main/resources/input/data.txt");

 try {

 FileInputStream fis = new FileInputStream(file);

 byte[] buffer = new byte[1024];

 StringBuilder sb = new StringBuilder();

 while (fis.read(buffer) != -1) {

 sb.append(new String(buffer));

 buffer = new byte[1024];

 }

 fis.close();

 log.info("Read with FileInputStream --> {}", sb.toString());

 } catch (IOException e) {

 log.error("Something went wrong! ", e);

 }

 }

}

Listing 11-21 Reading a File Using FileInputStream

If you run the previous code you will notice that in the console the expected output will be printed, but
you might notice something strange: after the text is printed, a set of strange characters are printed too. On a
macOS system they look as depicted in Figure 11-3.

Figure 11-3 Text read with FileInputStream

Do you have any idea what those characters might be?
It’s okay if you have no idea; I did not either the �irst time I had to use FileInputStream to read a �ile.

Those characters appear there because the �ile size is not a multiple of 1024, so the FileInputReader
ends up �illing the rest of the last buffer with zeroes. A �ix for this involves computing the size of the �ile in
bytes and making sure we adapt the byte[] buffer size accordingly. You can try doing that as an exercise
if you are in the mood for some coding. And now that we’ve shown you how to read �ile in a lot of ways, we
can continue by showing you how to write �iles, since you already know how to create them.

In Java 11, the InputStream was also enriched with a method that returns an InputStream that does
nothing. It is named nullInputStream() method and is designed for testing purposes and is nothing
else but a pseudo-InputStream implementation.

All classes presented so far are the ones you will encounter most while working with �iles in Java. If you
need more specialized readers feel free to read te of�icial documentation or use custom implementation
provided by third party libraries such as Apache Commons IO.2

Writing Files
Writing �iles in Java is quite similar to reading them, only different classes have to be used, because streams
are unidirectional. A stream that is used for reading data cannot be used for writing data as well. Almost for
any class or method of reading �iles there is one for writing �iles. Without further ado, let’s start.

Writing Files Using Files Utility Methods
Smaller �iles can be easily written starting with Java 1.7, using the Files.write(Path, byte[],
OpenOption... options) method. It takes two arguments: a Path representing the location of a �ile
and an array of bytes representing the data to be written. This method is a practical one-liner when the data
required to be written is small enough. The last argument is actually a Varargs that was introduced in
Chapter 4 and represents none, one, or more operations the �ile is opened for. The method can be used
without specifying any argument of that type as shown in Listing 11-22.

package com.apress.bgn.eleven.io;

// other import statements omitted

import java.io.File;

import java.io.IOException;

import java.nio.file.Files;

import java.nio.file.Path;

public class FilesWritingDemo {

 private static final Logger log =

LoggerFactory.getLogger(FilesWritingDemo.class);

 public static void main(String... args) {

 var file = new File("chapter11/read-write-

file/src/main/resources/output/data.txt");

 byte[] data = "Some of us, we’re hardly ever here".getBytes();

 try {

 Path dataPath = Files.write(file.toPath(), data);

 log.info("String written to {}", dataPath.toAbsolutePath());

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

Listing 11-22 Writing a String to a File Starting with Java 1.7

If the �ile already exists, the contents will be simply overwritten. This means that since no argument was
speci�ied to con�igure what we want to do with the �ile, the default beavior was to open the �ile for writing
and truncate its size to zero and start writing from there, thus overwriting it. The list of available options is
modelled by the values in the java.nio.file.StandardOpenOption enum. The value corresponding
to the default behavior is TRUNCATE_EXISTING. So this line in the previous example:

Path dataPath = Files.write(file.toPath(), data);

is equivalent to

import java.nio.file.StandardOpenOption

...

Path dataPath = Files.write(file.toPath(), data,

StandardOpenOption.TRUNCATE_EXISTING);

If the desired behavior is to modify a �ile if it exists and append the new data at its end, the option to use
as argument for the Files.write(..) method is APPEND. Path dataPath =
Files.write(file.toPath(), data, StandardOpenOption.APPEND);

Also, notice how the string needs to be converted to an array of bytes before being written. In Java 11
this is no longer necessary, because �inally some JDK developer thought that most people would probably
write a simple String to a �ile and forcing them to explicitly call getBytes() is pretty silly. As a result the
Files.writeString(..) methods were introduced, and one of them also supports specifying an
encoding. An example of this method being used to write a string into a �ile can be seen in Listing 11-23.

package com.apress.bgn.eleven.io;

// import statements omitted

public class FilesWritingDemo {

 private static final Logger log =

LoggerFactory.getLogger(FilesWritingDemo.class);

 public static void main(String... args) {

 var file = new File("chapter11/read-write-

file/src/main/resources/output/data.txt");

 try {

 Path dataPath = Files.writeString(file.toPath(),

 "\nThe rest of us, we're born to disappear",

 StandardCharsets.UTF_8,

 APPEND);

 log.info("String written to {}", dataPath.toAbsolutePath());

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

Listing 11-23 Writing a String to a File Starting with Java 11

Another version of the Files.write(..) takes an argument of type Iterable<? extends
CharSequence> which means that a list of String valued can be written using it, as shown in Listing 11-
24.

package com.apress.bgn.eleven.io;

// import statements omitted

public class FilesWritingDemo {

 private static final Logger log =

LoggerFactory.getLogger(FilesWritingDemo.class);

 public static void main(String... args) {

 var file = new File("chapter11/read-write-

file/src/main/resources/output/data.txt");

 List<String> dataList = List.of(

 "How do I stop myself from",

 "Being just a number?");

 try {

 Path dataPath = Files.write(file.toPath(), dataList,

 StandardCharsets.UTF_8,

 APPEND);

 log.info("String written to {}", dataPath.toAbsolutePath());

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

Listing 11-24 Writing a List<String> to a File Using Files.write(..)

Next we are going to look into writing �iles using classes in the Writer hierarchy.

Using Writer to Write Files
Similar to the Reader hierarchy for reading �iles, there is an abstract class named Writer, but before we
get to that let’s introduce the BufferedWriter, the correspondent of BufferedReader for writing �ile,
because this is one of the most used in practice. This class too has an internal buffer, and when write
methods are called the arguments are stored into the buffer, and when the buffer is full, its contents are
written to the �ile. The buffer can be emptied earlier by calling the flush() method . It is de�initely
recommended to call this method explicitly before calling close() to make sure all output was written to
the �ile. The code snippet in Listing 11-25 depicts how a list of String instances is written to a �ile.

package com.apress.bgn.eleven.io;

// other import statements omitted

import java.io.BufferedWriter;

import java.io.FileWriter;

public class FilesWritingDemo {

 private static final Logger log =

LoggerFactory.getLogger(FilesWritingDemo.class);

 public static void main(String... args) {

 var file = new File("chapter11/read-write-

file/src/main/resources/output/data.txt");

 var dataList = List.of ("How will I hold my head" ,

 "To keep from going under");

 BufferedWriter writer = null;

 try {

 writer = new BufferedWriter(new FileWriter(file));

 for (String entry : dataList) {

 writer.write(entry);

 writer.newLine();

 }

 } catch (IOException e) {

 log.info("Something went wrong! ", e);

 } finally {

 if(writer!= null) {

 try {

 writer.flush();

 writer.close();

 } catch (IOException e) {

 log.info("Something went wrong! ", e);

 }

 }

 }

 }

}

Listing 11-25 Writing a List<String> to a File \Using BufferedWriter

Yet another code contraption is needed, because writing �iles is a sensitive operation that can fail for
many reasons. The code in the previous listing is what you had to write before Java 1.7, when try-with-
resources reduced the boilerplate and allowed for the previous code to be reduced as shown in Listing
11-26.

package com.apress.bgn.eleven.io;

// other import statements omitted

import java.io.BufferedWriter;

import java.io.FileWriter;

public class FilesWritingDemo {

 private static final Logger log =

LoggerFactory.getLogger(FilesWritingDemo.class);

 public static void main(String... args) {

 var file = new File("chapter11/read-write-

file/src/main/resources/output/data.txt");

 var dataList = List.of ("How will I hold my head" ,

 "To keep from going under");

 try (final BufferedWriter wr = new BufferedWriter(new

FileWriter(file))){

 dataList.forEach(entry -> {

 try {

 wr.write(entry);

 wr.newLine();

 } catch (IOException e) {

 log.info("Something went wrong! ", e);

 }

 });

 wr.flush();

 } catch (IOException e) {

 log.info("Something went wrong! ", e);

 }

 }

}

Listing 11-26 Writing a List<String> to a File Using BufferedWriter

Notice how there is no need to call wr.close(), because in Java 1.7 the java.io.Closeable
interface was modi�ied to extend java.lang.AutoCloseable, which declares a version of the close()
method that is called automatically when exiting a try-with-resources block. Still, the code looks
pretty stuffy, right? Especially since a BufferedWriter needs to be declared and needs to be wrapped
around a FileWriter instance. This was simpli�ied in Java 1.8 with the addition of the Files utility class,
which contains a method named newBufferedWriter(Path path) that returns a BufferedWriter
instance so that the developer no longer has to write that code explicitly. So the initialization expression in
the try-with-resources in Listing 11-26 can be replaced with:

final BufferedWriter wr = Files.newBufferedWriter(file.toPath())

Also, there is a version of this method taking a charset argument:

final BufferedWriter wr =

Files.newBufferedWriter(file.toPath(),StandardCharsets.UTF_8)

Before this method was introduced, writing text to a �ile with a speci�ied charset required a
java.io.OutputStreamWriter instance.

final OutputStreamWriter wr = new OutputStreamWriter(new

FileOutputStream(file), StandardCharsets.UTF_8)

There is also a version of this method taking an argument of type OpenOption that allows you to
specify how the �ile should be opened.

final BufferedWriter wr =

Files.newBufferedWriter(file.toPath(),StandardCharsets.UTF_8,

StandardOpenOption.APPEND)

This is very useful, since a BufferedWriter created explicitly (without specifying a �ile option)
overrides an existing �ile, unless the FileWriter that is wrapped around is con�igured to append data to
an existing �ile, as depicted here:

final BufferedWriter wr = new BufferedWriter(new FileWriter(file, true))

The second parameter is a boolean value representing if the �ile should be opened for appending text
(true) or not(false).

Now that the basics of using BufferedWriter have been covered, it’s time to meet he most useful
members of the Writer family that are depicted in Figure 11-4.

Figure 11-4 The Writer class hierarchy

The Writer class is abstract, so it cannot be used directly; the appending API comes from the
java.io.Appendable interface that Writer implements. The other Writer classes are used for
different purposes. As we’ve already seen, the OutputStreamWriter is used to write text using a special
character encoding.

The PrintWriter is used to write formatted representations of objects to a text-output stream (we’ve
already used it to write HTML code, in the previous chapter).

The StringWriter is used to collect output into its internal buffer and write it to a String instance.
In Java 11, the Writer class was enriched with the nullWriter() method, which returns a Writer

instance that does nothing. This was requested by developers for testing purposes.

Using OutputStream to Write Files
Classes in the Writer family are advanced classes for writing data as text using character streams, but
essentially, before data is written it is turned into bytes. This obviously means that �iles can be written by
using stream of bytes as well. This probably became obvious when trying to use the proper character
encoding when writing text using the OutputStreamWriter , as the OutputStreamWriter instance
given as argument is based on a FileOutputStream instance, a type that is used to write byte streams to
a �ile.

The root class of this hierarchy is java.io.OutputStream and the most common members of the
hierarchy are depicted in Figure 11-5.

Figure 11-5 The OutputStream class hierarchy

Since FileOutputStream has been mentioned, Listing 11-27 shows how to use it to write a list of
String entries.

package com.apress.bgn.eleven.io;

// other import statements omitted

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

public class OutputStreamWritingDemo {

 private static final Logger log =

LoggerFactory.getLogger(OutputStreamWritingDemo.class);

 public static void main(String... args) {

 var file = new File("chapter11/read-write-

file/src/main/resources/output/data.txt");

 var dataList = List.of("Down to the wire" ,

 "I wanted water but" ,

 "I'll walk through the fire" ,

 "If this is what it takes");

 try (FileOutputStream output = new FileOutputStream(file)){

 dataList.forEach(entry -> {

 try {

 output.write(entry.getBytes());

 output.write("\n".getBytes());

 } catch (IOException e) {

 log.info("Something went wrong! ", e);

 }

 });

 output.flush();

 } catch (FileNotFoundException e) {

 log.info("Something went wrong! ", e);

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

Listing 11-27 Writing a List<String> to a File Using FileOutputStream

The OutputStream family class is used for writing streams of bytes which represent raw data,
unreadable by users directly, such as the one contained in binary �iles like images, media, PDFs, and so on.
For example, the code in Listing 11-28 makes a copy of an image using FileInputStream to read it and
FileOutputStream to write the copy.

package com.apress.bgn.eleven.io;

// other import statements missing

import java.io.*;

public class DuplicateImageDemo {

 private static final Logger log =

LoggerFactory.getLogger(DuplicateImageDemo.class);

 public static void main(String... args) {

 File src = new File(

 "chapter11/read-write-file/src/main/resources/input/the-

beach.jpg");

 File dest = new File(

 "chapter11/read-write-file/src/main/resources/output/copy-

the-beach.jpg");

 try(FileInputStream fis = new FileInputStream(src);

 FileOutputStream fos = new FileOutputStream(dest)) {

 int content;

 while ((content = fis.read()) != -1) {

 fos.write(content);

 }

 } catch (FileNotFoundException e) {

 log.error("Something bad happened.", e);

 } catch (IOException e) {

 log.error("Something bad happened.", e);

 }

 }

}

Listing 11-28 Making a Copy of an Image File Using FileOutputStream

However, writing code like this is no longer necessary, thanks to the introduction of the
Files.copy(src.toPath(), dest.toPath()) method in Java 1.7.

In Java 11, the OutputStream was enriched with the nullOutputStream() method that returns a
OutputStream instance that does nothing. This was requested by developers for testing purposes and is
designed for testing purposes and is nothing else but a pseudo-OutputStream implementation.

Using NIO to Manage Files
The java.nio package was introduced at the beginning of the chapter in comparison with the java.io
package. Most classes and methods used up to this section of this book were part of the java.io package
and blocked the main thread while the data was read/written. The utility classes java.nio.file.Paths
and java.nio.file.Files introduced in previous section contain methods that make use of classes in
the java.nio package as well as in the java.io package. It is time to show you how to manipulate �iles
using java.nio classes as well.

Manipulating a �ile using java.nio requires an instance of java.nio.channels.FileChannel.
This a special abstract class that describes a channel for reading, writing, mapping, and manipulating a �ile.
A FileChannel instance is connected to a �ile and holds a position within a �ile that can be queried and
modi�ied.

To read data from a �ile using a FileChannel instance the following are needed:

A �ile handler instance
A FileInputStream instance the channel is based on
A FileChannel instance
A java.nio.Buffer instance

Being nonblocking, a thread can ask a channel to read data from a buffer and then do other things, until
the data is available. Java NIO’s buffers allow moving back and forth in the buffer as needed. The data is read
into a buffer and cached there until is processed. There are buffer implementations for all primitive types in
the java.nio package and depending on the purpose of the data you can use any of them. Listing 11-29
shows how to read data from a �ile into a ByteBuffer. Since the ByteBuffer can be instantiated with an
initial size, by con�iguring the ByteBuffer catacity in bytes to be the same as the �ile size, the �ile can be
read in one go.

package com.apress.bgn.eleven.nio;

// other import statements omitted

import java.nio.ByteBuffer;

import java.nio.channels.FileChannel;

public class ChannelDemo {

 private static final Logger log =

LoggerFactory.getLogger(ChannelDemo.class);

 public static void main(String... args) {

 var sb = new StringBuilder();

 try (FileInputStream is = new FileInputStream("chapter11/read-write-

file/src/main/resources/input/data.txt");

 FileChannel inChannel = is.getChannel()) {

 long fileSize = inChannel.size();

 ByteBuffer buffer = ByteBuffer.allocate((int)fileSize);

 inChannel.read(buffer);

 buffer.flip();

 while(buffer.hasRemaining()){

 sb.append((char) buffer.get());

 }

 } catch (IOException e) {

 log.error("File could not be read! ", e);

 }

 log.info("Read with FileChannel --> {}", sb.toString());

 }

}

Listing 11-29 Reading a �ile Using FileChannel Using a ByteBuffer

The method getChannel() returns the unique FileChannel object associated with this �ile input
stream. The most important statement in the previous code sample is the buffer.flip() call. Calling this
method �lips the buffer, meaning that a buffer is switched from writing mode to reading mode. This means
initially the channel is the able to write data in the buffer because it is in writing mode, but after the buffer is
full the buffer is switched to reading mode, so the main thread can read its contents.

After reading the contents of a buffer, if there is need to do it again, the buffer.rewind() method sets
the position to zero.

If the �ile is big the ByteBuffer can be reinitialized multiple times, but in this case the buffer must be
cleared before new data is written by the channel, and this can be done by calling buffer.close(). Also,
using a FileInputStream to obtain a channel is not the correct way to do it, since it limits it to reading
from the �ile. But a channel can both read and write from a �ile, so the recommended way is to use a
java.io.RandomAccessFile instance as a �ile handler, as depicted in Listing 11-30.

package com.apress.bgn.eleven.nio;

// other import statements omitted

import java.io.RandomAccessFile;

import java.nio.ByteBuffer;

import java.nio.channels.FileChannel;

public class ChannelDemo {

 private static final Logger log =

LoggerFactory.getLogger(ChannelDemo.class);

 public static void main(String... args) {

 var sb = new StringBuilder();

 sb = new StringBuilder();

 try (RandomAccessFile file = new RandomAccessFile("chapter11/read-

write-file/src/main/resources/input/data.txt", "r");

 FileChannel inChannel = file.getChannel()) {

 ByteBuffer buffer = ByteBuffer.allocate(48);

 while(inChannel.read(buffer) > 0) {

 buffer.flip();

 for (int i = 0; i < buffer.limit(); i++) {

 sb.append((char) buffer.get());

 }

 buffer.clear();

 }

 } catch (IOException e) {

 log.error("File could not be read! ", e);

 }

 log.info("Read with FileChannel --> {}", sb.toString());

 }

}

Listing 11-30 Reading a File Using FileChannel Using a Smaller ByteBuffer

Making a copy of a �ile is simple as well; it’s just about moving the data from a channel to another using a
buffer, as shown in Listing 11-31.

package com.apress.bgn.eleven.nio;

// other import statements omitted

import java.nio.ByteBuffer;

import java.nio.channels.FileChannel;

public class DuplicateImageDemo {

 private static final Logger log =

LoggerFactory.getLogger(DuplicateImageDemo.class);

 public static void main(String... args){

 final String inDir = "chapter11/read-write-

file/src/main/resources/input/";

 final String outDir = "chapter11/read-write-

file/src/main/resources/output/";

 try(FileChannel source =

 new RandomAccessFile(inDir + "the-beach.jpg",

"r").getChannel();

 FileChannel dest =

 new RandomAccessFile(outDir + "copy-the-beach.jpg",

"rw").getChannel()) {

 ByteBuffer buffer = ByteBuffer.allocateDirect(48);

 while (source.read(buffer) != -1) {

 buffer.flip();

 while (buffer.hasRemaining()) {

 dest.write(buffer);

 }

 buffer.clear();

 }

 } catch (Exception e) {

 log.error("Image could not be copied! ", e);

 }

 }

}

Listing 11-31 Duplicating an Image Using FileChannel and a ByteBuffer

Another way to do it is to use dedicated ReadableByteChannel and WritableByteChannel , as
shown in listing 11-32.

package com.apress.bgn.eleven.nio;

// other import statements omitted

import java.nio.channels.ReadableByteChannel;

import java.nio.channels.WritableByteChannel;

public class DuplicateImageDemo {

 private static final Logger log =

LoggerFactory.getLogger(DuplicateImageDemo.class);

 public static void main(String... args){

 final String inDir = "chapter11/read-write-

file/src/main/resources/input/";

 final String outDir = "chapter11/read-write-

file/src/main/resources/output/";

 try(ReadableByteChannel source = new FileInputStream (inDir + "the-

beach.jpg").getChannel();

 WritableByteChannel dest = new FileOutputStream (outDir + "2nd-

copy-the-beach.jpg").getChannel()) {

 ByteBuffer buffer = ByteBuffer.allocateDirect(48);

 while (source.read(buffer) != -1) {

 buffer.flip();

 while (buffer.hasRemaining()) {

 dest.write(buffer);

 }

 buffer.clear();

 }

 } catch (Exception e) {

 log.error("Image could not be copied! ", e);

 }

 }

}

Listing 11-32 Duplicating an Image Using ReadableByteChannel and a ByteBuffer

Because of their nonblocking nature, Java channels are suitable for applications that handle data
provided by multiple sources. Such us applications that manage connections with multiple sources over a
network. Figure 11-6 depicts the most important members of the Channel hierarchy.

Figure 11-6 The channel class/interface hierarchy (as shown in IntelliJ IDEA)

The DatagramChannel can read and write data over the network via UDP. The SocketChannel can
read and write data over the network via TCP and the ServerSocketChannel allows you to listen for incoming
TCP connections, like a web server does. For each incoming connection a SocketChannel is created.

The NIO components (interfaces and classes) were introduced to complement existing IO functionality.
Java IO reads or writes one byte or character at a time. Buffering makes used of Java Heap memeory which
can become problematic when �iles of considerable sizes are used. When NIO was released there was a
statement that NI0 was more ef�icient and had better performance than pure Java I/O, but it all depends on
the application you are trying to build. NIO introduces the possibility to handle raw bytes in bulk, the
possibility of asynchronous operations, and off-heap buffering. Buffers are created outside the central
memory of the JVM, in portions of memory not handled by the garbage collector. This allows for larger
buffers to be created, so bigger �iles can be read without the danger of an OutOfMemoryException being
thrown because the JVM is out of memory.

If you ever �ind yourself needing to handle a lot of data make sure to read the JDK NIO documentation
very well, because this section has just scratched the surface.

Serialization and Deserialization
Serialization is the name given to the operation of converting the state of an object to a byte sequence. In
this format it can be sent over a network or written to a �ile and reverted back into a copy of that object. The
operation to covert the byte sequence back to an object is named Deserialization . Java Serialization has
been a controversial topic, with Java Platform Chief Architect Mark Reinhold describing it as a horrible
mistake made in 1997. Apparently most Java vulnerabilities are somehow related to the way serialization is
done in Java, and there is a project named Amber3 that is dedicated to remove Java serialization completely
and allow developers to choose the serialization in a format of their choice.

Currently things are quite unstable in JAVA; there were quite a lot of changes introduced in a short time
that an industry addicted to backward compatibility was unable to adapt to. Sources in the next section
might be unstable, but I will do my best to keep them at least compilable by the time the book is published
and I will maintain the repository and answer questions as much as possible.

Byte Serialization

The java.io.Serializable interface has no methods or �ields and serves only to mark classes as being
serializable. When an object is serialized, the information that identi�ies the object type is serialized as well.
Most Java classes are serializable. Any subclass of a serializable class is by default considered serializable. If
any �ields are nonserializable then an exception of type NotSerializableException will be thrown.
Classes written by developers that contain nonserializable �ields must implement the Serializable
interface and provide a concrete implementation for the methods shown in Listing 11-33.

private void writeObject(java.io.ObjectOutputStream out)

 throws IOException;

private void readObject(java.io.ObjectInputStream in)

 throws IOException, ClassNotFoundException;

private void readObjectNoData()

 throws ObjectStreamException;

Listing 11-33 Methods That Need to Be Emplemented to Make a Custom Class Serializable

These are not methods that are part of a speci�ic Java interface, so implementing them in this context just
means writing a body for them in the class you want to make serializable. The reason they were grouped in
the previous listing, was to depict the signatures of these methods.

The writeObject(..) method is used for writing the state of the object, so that the
readObject(..) method can restore it. The readObjectNoData() method is used to initialize the
state of the object when the deserialization operation failed for some reason, so this method provides a
default state despite the issues (e.g., incomplete stream, client application does not recognize the
deserialized class, etc.). This method is not really mandatory, if you are an optimist.

Also, when making a class serializabile, a static �ield of type long must be added as a unique identi�ier for
the class to make sure both the application that sends the object as a byte stream and the client application
receiving it have the same loaded classes. If the application that receives the byte stream has a class with a
different identi�ier, a java.io.InvalidClassException will be thrown. When this happens it means
that the application was not updated, or you might even suspect some foul play from a hacker. The �ield has
to be named serialVersionUID, and if the developer does not explicitly add one, the serialization
runtime will. The following code snippet in Listing 11-34 depicts a class named Singer that contains
serialization and deserialization methods mentioned in the previous code snippet.

package com.apress.bgn.eleven;

import java.io.*;

import java.time.LocalDate;

import java.util.Objects;

public class Singer implements Serializable {

 private static final long serialVersionUID = 42L;

 private String name;

 private Double rating;

 private LocalDate birthDate;

 public Singer() {

 /* required for deserialization */

 }

 public Singer(String name, Double rating, LocalDate birthDate) {

 this.name = name;

 this.rating = rating;

 this.birthDate = birthDate;

 }

 private void writeObject(ObjectOutputStream out) throws IOException {

 out.defaultWriteObject();

 }

 private void readObject(ObjectInputStream in) throws IOException,

ClassNotFoundException {

 in.defaultReadObject();

 }

 private void readObjectNoData() throws ObjectStreamException {

 this.name = "undefined";

 this.rating = 0.0;

 this.birthDate = LocalDate.now();

 }

 @Override

 public String toString() {

 return "Singer{" +

 "name='" + name + '\'' +

 ", rating=" + rating +

 ", birthDate=" + birthDate +

 '}';

 }

 @Override

 public boolean equals(Object o) {

 if (this == o) return true;

 if (o == null || getClass() != o.getClass()) return false;

 Singer singer = (Singer) o;

 return Objects.equals(name, singer.name) &&

 Objects.equals(rating, singer.rating) &&

 Objects.equals(birthDate, singer.birthDate);

 }

 @Override

 public int hashCode() {

 return Objects.hash(name, rating, birthDate);

 }

}

Listing 11-34 Serializable Singer Class

Now that we have the class, let’s instantiate it, serialize it, save it to a �ile, and then deserialize the
contents of the �ile into another object that we will compare with the initial object. All these operations are
depicted in Listing 11-35.

package com.apress.bgn.eleven;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import java.io.*;

import java.time.LocalDate;

import java.time.Month;

public class SerializationDemo {

 private static final Logger log =

LoggerFactory.getLogger(SerializationDemo.class);

 public static void main(String... args) throws ClassNotFoundException {

 LocalDate johnBd = LocalDate.of(1977, Month.OCTOBER, 16);

 Singer john = new Singer("John Mayer", 5.0, johnBd);

 File file = new

File("chapter11/serialization/src/test/resources/output/john.txt");

 try (var out = new ObjectOutputStream(new FileOutputStream(file))){

 out.writeObject(john);

 } catch (IOException e) {

 log.info("Something went wrong! ", e);

 }

 try(var in = new ObjectInputStream(new FileInputStream(file))){

 Singer copyOfJohn = (Singer) in.readObject();

 log.info("Are objects equal? {}", copyOfJohn.equals(john));

 log.info("--> {}", copyOfJohn);

 } catch (IOException e) {

 log.info("Something went wrong! ", e);

 }

 }

}

Listing 11-35 Serializing and Deserializing a Singer Class

When the previous code is run, everything works as expected, and the writeObject(..) and the
readObject(..) are called by the ObjectOutputStream, ObjectInputStream respectively. If you
want to test that they are actually called you can add logging, or you can place breakpoints inside them and
run the program in debug. If you open the john.txt you won’t be able to understand much. The text
written in there does not make much sense, because it is binary, raw data. If you open the �ile, you might see
something like what is depicted in Figure 11-7.

Figure 11-7 Serialized Singer instance

XML Serialization
Java serialization does not have to result in cryptic �iles, however. Objects can be serialized to readable
formats. One of the most-used serialization formats is XML, and JDK provides classes to convert objects to
XML and from XML back to the initial object. Java Architecture for XML Binding (JAXB) used to provide a
fast and convenient way to bind XML schemas and Java representations, making it easy for Java developers
to incorporate XML data and processing functions in Java applications. The operation to serialize an object
to XML is named marshalling. The operation to deserialize an object form XML is named unmarshalling.
For a class to be serializable to XML, it has to be decorated with JAXB speci�ic annotations:

@XmlRootElement(name = "... ") is a top level annotation that is placed at class level to tell JAXB
that the class name will become an XML element at serialization time; if a different name is needed for the
XML element, it can be speci�ied via the name attribute.

@XmlElement(name = "..") is a method or �ield level annotation that is used to tell JAXB that the
�ield or method name will become an XML element at serialization time; if a different name is needed for
the XML element, it can be speci�ied via the name attribute.
@XmlAttribute(name = "..") is a method or �ield level annotation that is used to tell JAXB that the
�ield or method name will become an XML attribute at serialization time; if a different name is needed for
the XML attribute, it can be speci�ied via the name attribute.

JAXB was removed from JDK 11, so if you want to use it, you must add external dependencies.4 When the
previous edition of this book was written, the library was more than a little unstable. The
com.sun.xml.internal.bind.v2.ContextFactory was part of the jaxb-impl library which
could not be found on any public repository at the time, at least not a version that was compiled with Java
11. This made con�iguring modules a pain because of multiple dependencies exporting the same packages.
However, the code worked at the time and since in practice you might happen to work on older projects, so it
is good to know it exists.

The code to make the Singer class serializable with JAXB is depicted in Listing 11-36. Notice how the
annotations listed previously are used on the class header and class public getters.

package com.apress.bgn.eleven.xml;

import javax.xml.bind.annotation.XmlAttribute;

import javax.xml.bind.annotation.XmlElement;

import javax.xml.bind.annotation.XmlRootElement;

import java.io.Serializable;

import java.time.LocalDate;

import java.util.Objects;

@XmlRootElement(name = "singer")

public class Singer implements Serializable {

 private static final long serialVersionUID = 42L;

 private String name;

 private Double rating;

 private LocalDate birthDate;

 public Singer() {

 /* required for deserialization */

 }

 public Singer(String name, Double rating, LocalDate birthDate) {

 this.name = name;

 this.rating = rating;

 this.birthDate = birthDate;

 }

 @XmlAttribute(name = "name")

 public String getName() {

 return name;

 }

 @XmlAttribute(name = "rating")

 public Double getRating() {

 return rating;

 }

 @XmlElement(name = "birthdate")

 public LocalDate getBirthDate() {

 return birthDate;

 }

 // other code omitted

}

Listing 11-36 A Singer Class with JAXB Annotations

Listing 11-37 depicts the code needed to serialize an instance of the Singer class.

package com.apress.bgn.eleven.xml;

// other imports omitted

import javax.xml.bind.JAXBContext;

import javax.xml.bind.JAXBException;

import javax.xml.bind.Marshaller;

import javax.xml.bind.Unmarshaller;

public class JAXBSerializationDemo {

 private static final Logger log =

LoggerFactory.getLogger(JAXBSerializationDemo.class);

 public static void main(String... args) throws ClassNotFoundException,

JAXBException {

 LocalDate johnBd = LocalDate.of(1977, Month.OCTOBER, 16);

 Singer john = new Singer("John Mayer", 5.0, johnBd);

 File file = new

File("chapter11/serialization/src/main/resources/output/john.xml");

 JAXBContext jaxbContext = JAXBContext.newInstance(Singer.class);

 try {

 Marshaller marshaller = jaxbContext.createMarshaller();

 marshaller.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, true);

 marshaller.marshal(john, file);

 } catch (Exception e) {

 log.info("Something went wrong! ", e);

 }

 try {

 Unmarshaller unmarshaller = jaxbContext.createUnmarshaller();

 Singer copyOfJohn = (Singer) unmarshaller.unmarshal(file);

 log.info("Are objects equal? {}", copyOfJohn.equals(john));

 log.info("--> {}", copyOfJohn.toString());

 } catch (Exception e) {

 log.info("Something went wrong! ", e);

 }

 }

}

Listing 11-37 Marshalling and Unmarshalling a Singer Class with JAXB

Using JAXB with JDK 17 is not an option, because the community library has been unmaintained since
2018. A choice was made to introduce XML serialization in this edition of book using one of the most stable,
versatile, and up-to-date libraries: Jackson.5

Jackson has been known for quite a wile in the Java ecosystem as the ultimate Java JSON library, but it has
modules that support serialization to quite a few formats, among them XML, JSON, CSV, TAML, and YAML.

Just check the project page; chances are that if there is a new catchy serialization format emerging, there
might already be a module for that.

There are a few things to keep in mind when serializing to XML using Jackson.

there is a different set of annotations to use, the most important are listed here:

– @JacksonXmlRootElement(localName = "... ") is a top level annotation that is placed at
class level to tell Jackson that the class name will become an XML element at serialization time; if a
different name is needed for the XML element, it can be speci�ied via the localName attribute.

– @JacksonXmlProperty(localName = "... ") is a method or �ield level annotation that is used
to tell Jackson that the �ield or method name will become an XML element at serialization time; if a
different name is needed for the XML element, it can be speci�ied via the localName attribute.

– @JacksonXmlProperty(localName = "...", isAttribute = true) with the
isAttribute = true parameter is used when the property is con�igured to become an XML
attribute.

to serialize and deserialize with Jackson, an instance of
com.fasterxml.jackson.dataformat.xml.XmlMapper is used.
the XmlMapper instance has to be con�igured to support special types such as the new Java 8 Date API
types, and this is done by registering and con�iguring the
com.fasterxml.jackson.datatype.jsr310.JavaTimeModule.
when using Java modules you have to make sure they are con�igured correctly. Exceptions will not always
be easy to read and solving them might require a combination of Maven and module con�iguration to
solve.

This being said, let’s start with the modules con�iguration shown in Listing 11-38.

module chapter.eleven.serialization {

 requires org.slf4j;

 requires com.fasterxml.jackson.databind;

 requires com.fasterxml.jackson.dataformat.xml;

 requires com.fasterxml.jackson.datatype.jsr310;

 opens com.apress.bgn.eleven.xml to com.fasterxml.jackson.databind;

}

Listing 11-38 Module Con�iguration for XML Serialization with Jackson

The �irst two requires com.fasterxml.jackson.* directives are needed so that Jackson
annotations and XmlMapper can be used. The jsr310 is required for serialization of Java 8 Date API types.

The last statement opens com.apress.bgn.eleven.xml to
com.fasterxml.jackson.databind is necessary so that Jackson can access the classes in package
com.apress.bgn.eleven.xml, because that is where the version of the Singer class written using the
Jackson annotation is located. The class is depicted in Listing 11-39.

package com.apress.bgn.eleven.xml;

// other imports omitted

import com.fasterxml.jackson.dataformat.xml.annotation.JacksonXmlProperty;

import

com.fasterxml.jackson.dataformat.xml.annotation.JacksonXmlRootElement;

@JacksonXmlRootElement(localName = "singer")

public class Singer implements Serializable {

 private static final long serialVersionUID = 42L;

 private String name;

 private Double rating;

 private LocalDate birthDate;

 public Singer() {

 /* required for deserialization */

 }

 public Singer(String name, Double rating, LocalDate birthDate) {

 this.name = name;

 this.rating = rating;

 this.birthDate = birthDate;

 }

 @JacksonXmlProperty(localName = "name", isAttribute = true)

 public String getName() {

 return name;

 }

 @JacksonXmlProperty(localName = "rating", isAttribute = true)

 public Double getRating() {

 return rating;

 }

 @JacksonXmlProperty(localName = "birthdate")

 public LocalDate getBirthDate() {

 return birthDate;

 }

 // other code omitted

}

Listing 11-39 A Singer Class with Jackson XML Annotations

Notice the location where the annotations were placed. Based on the placement of the annotations and
their con�igurations in the previous code when the john object is serialized, the john.xml �ile is expected
to contain the snippet depicted in Listing 11-40.

<singer name="John Mayer" rating="5.0">

 <birthdate>1977-10-16</birthdate>

</singer>

Listing 11-40 The john Singer Instance in XML Format

More readable than the binary version, right? Listing 11-41 depicts the code that saves the Singer
instance to the john.xml �ile, and then it loads it back into a copy and then the two instances are
compared.

package com.apress.bgn.eleven.xml;

// some import statements omitted

import com.fasterxml.jackson.databind.SerializationFeature;

import com.fasterxml.jackson.dataformat.xml.XmlMapper;

import com.fasterxml.jackson.datatype.jsr310.JavaTimeModule;

public class XMLSerializationDemo {

 private static final Logger log = LoggerFactory.getLogger(XMLSerialization

 public static void main(String... args) {

 LocalDate johnBd = LocalDate.of(1977, Month.OCTOBER, 16);

 Singer john = new Singer("John Mayer", 5.0, johnBd);

 var xmlMapper = new XmlMapper();

 xmlMapper.registerModule(new JavaTimeModule());

 xmlMapper.configure(SerializationFeature.WRITE_DATES_AS_TIMESTAMPS, fa

 xmlMapper.enable(SerializationFeature.INDENT_OUTPUT);

 try {

 String xml = xmlMapper.writeValueAsString(john);

 Files.writeString(Path.of("chapter11/serialization/src/test/resour

xml,

 StandardCharsets.UTF_8);

 } catch (Exception e) {

 log.info("Serialization to XML failed! ", e);

 }

 try {

 Singer copyOfJohn =

xmlMapper.readValue(Path.of("chapter11/serialization/src/test/resources/output

Singer.class);

 log.info("Are objects equal? {}", copyOfJohn.equals(john));

 log.info("--> {}", copyOfJohn);

 } catch (IOException e) {

 log.info("Deserialization of XML failed! ", e);

 }

 }

}

Listing 11-41 Serializing and Deserializing a Singer Class with Jackson’s XmlMapper

The XmlMapper instance can be used to serialize any class in the project that contains Jackson
annotations. In the previous example it is also con�igured to support default serialization of Java 8 Date API
types and keep types readable, by not converting them to numeric time stamps using the following two
lines:

xmlMapper.registerModule(new JavaTimeModule());

xmlMapper.configure(SerializationFeature.WRITE_DATES_AS_TIMESTAMPS, false);

Since the chosen format is XML it would look pretty ugly if all of it was written in a single line, so
indented formatting is supported using this statement
xmlMapper.enable(SerializationFeature.INDENT_OUTPUT).

XML serialization has been dominating the development �ield for many years, being used in most web
services and remote communication. However, XML �iles tend to become crowded, redundant, and painful to
read as they become bigger, so a new format stole the show: JSON.

JSON Serialization
JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is readable for humans and is
easy for machines to parse and generate. JSON is the favorite format for data being used in JavaScript
applications, for REST based applications, and the internal format used by quite a few NoSQL databases.
Therefore it is only appropriate that we show you how to serialize/deserialize Java objects using this format
as well. The advantage of serializing Java objects to JSON is that there is more than one library providing
classes to do so, which means at least one of them is stable with Java 9+ versions.

JSON format is in essence a collection of key-pair values. The values can be arrays, or collection of key-
pairs themselves. The most preferred library for JSON serialization is the Jackson library as well, because it
can convert Java objects to JSON objects and back again without much code being needed to be written. The
best part for this chapter is that the same module con�iguration can be used for JSON too. All we need is to
just change the annotations used and change the type of mapper used to do the
serialization/deserialization. Jackson supports a multitude of annotation for JSON Serialization, but for the
simple example in this book, we don’t really need any. A Jackson

com.fasterxml.jackson.databind.json.JsonMapper instance is smart enough to auto-detect
the publicly accessible properties (public �ields, or private �ields with public getters) of a class and use them
when serializing/deserializing instances of this class.

The @JsonAutoDetect annotation from the package com.fasterxml.jackson.annotation can
be used to annotate a class. It can be con�igured to tell the mapper which class members should be
serialized. There are a few options, grouped in the Visibility enum declared within the annotation body:

ANY all kinds of access modi�iers (public, protected, private) are auto-detected.
NON_PRIVATE all modi�iers except private are auto-detected.
PROTECTED_AND_PUBLIC, only protected and public modi�iers are auto-detected.
PUBLIC_ONLY only public modi�iers are auto-detected.
NONE disable auto-detection for �ields or methods. In this case con�iguration has to be done explicitly
using @JsonProperty annotations on �ields.
DEFAULT defult rules apply, depending on the context (sometimes inherited from a parent).

This single annotation placed on the Singer class combined with the proper mapper and the
JavaTimeModule ensures that an instance of Singer class can be serialized to JSON correctly; and also
deserialized from JSON. Listing 11-42 shows the simple con�iguration of the Singer class (even if
redundant).

package com.apress.bgn.eleven.json;

// some import statements omitted

import com.fasterxml.jackson.annotation.JsonAutoDetect;

@JsonAutoDetect(getterVisibility = JsonAutoDetect.Visibility.PUBLIC_ONLY)

public class Singer implements Serializable {

 private static final long serialVersionUID = 42L;

 private String name;

 private Double rating;

 private LocalDate birthDate;

 public String getName() { // auto-detected

 return name;

 }

 public Double getRating() { // auto-detected

 return rating;

 }

 public LocalDate getBirthDate() { // auto-detected

 return birthDate;

 }

 // other code omitted

}

Listing 11-42 Annotating a Singer Class with Jackson @JsonAutoDetect Just to Show How It’s Done

For serializing a Singer instance, an instance of JsonMapper is needed. This class was introduced in
Jackson version 2.10. Up to that version the com.fasterxml.jackson.databind. ObjectMapper
was used for the same purpose. ObjectMapper is intended to become the root class for all mappers in
future versions. The XmlMapper used in the previous section extends ObjectMapper too. The
JsonMapper is a JSON-format speci�ic ObjectMapper implementation and is intended to replace the
generic implementation and Listing 11-43 depicts an example how it can be used to serialize/deserialize a
Singer instance.

package com.apress.bgn.eleven.json;

// other import statements omitted

import com.apress.bgn.eleven.xml.Singer;

import com.fasterxml.jackson.databind.SerializationFeature;

import com.fasterxml.jackson.databind.json.JsonMapper;

import com.fasterxml.jackson.datatype.jsr310.JavaTimeModule;

public class JSONSerializationDemo {

 private static final Logger log = LoggerFactory.getLogger(JSONSerializatio

 public static void main(String... args) {

 LocalDate johnBd = LocalDate.of(1977, Month.OCTOBER, 16);

 com.apress.bgn.eleven.xml.Singer john = new Singer("John Mayer", 5.0,

 JsonMapper jsonMapper = new JsonMapper();

 jsonMapper.registerModule(new JavaTimeModule());

 jsonMapper.enable(SerializationFeature.INDENT_OUTPUT);

 jsonMapper.configure(SerializationFeature.WRITE_DATES_AS_TIMESTAMPS, f

 try {

 String xml = jsonMapper.writeValueAsString(john);

 Files.writeString(Path.of("chapter11/serialization/src/test/resour

xml,

 StandardCharsets.UTF_8);

 } catch (Exception e) {

 log.info("Serialization to XML failed! ", e);

 }

 try {

 Singer copyOfJohn =

jsonMapper.readValue(Path.of("chapter11/serialization/src/test/resources/outpu

Singer.class);

 log.info("Are objects equal? {}", copyOfJohn.equals(john));

 log.info("--> {}", copyOfJohn);

 } catch (IOException e) {

 log.info("Deserialization of XML failed! ", e);

 }

 }

}

Listing 11-43 Serializing and Deserializing a Singer Class with Jackson’s JsonMapper

As you can see, except �ir the type of mapper user, not much in this code sample has changed when
making the switch from XML. Jackson is pretty great, right?

The �ield birthDate in clas Singer is of type java.time.LocalDate. Registering the
JavaTimeModule allows control over how this type of �ields is serialized/deserialized at the mapper level.
The other way to do it, is to declare a custom serializer and deserializer class for this type of data and
con�igure them to be used by annotating the birthDate with the @JsonSerialize and
@JsonDeserialize annotation. Listing 11-44 shows the custom serializer and deserializer classes
con�igured on the birthdate �ield.

package com.apress.bgn.eleven.json2;

// other import statements omitted

import com.fasterxml.jackson.databind.annotation.JsonDeserialize;

import com.fasterxml.jackson.databind.annotation.JsonSerialize;

@JsonAutoDetect(getterVisibility = JsonAutoDetect.Visibility.PUBLIC_ONLY)

public class Singer implements Serializable {

 private static final long serialVersionUID = 42L;

 private String name;

 private Double rating;

 @JsonSerialize(converter = LocalDateTimeToStringConverter.class)

 @JsonDeserialize(converter = StringToLocalDatetimeConverter.class)

 private LocalDate birthDate;

 // other code omitted

}

Listing 11-44 Con�iguring Custom Serialization and Deserialization for java.time.LocalDate Fields

Listing 11-45 shows the custom implementation of two serializer and deserializer classes.

package com.apress.bgn.eleven.json2;

import com.fasterxml.jackson.databind.util.StdConverter;

import java.time.LocalDateTime;

import java.time.format.DateTimeFormatter;

import java.time.format.FormatStyle;

class LocalDateTimeToStringConverter extends StdConverter<LocalDateTime,

String> {

 static final DateTimeFormatter DATE_FORMATTER =

DateTimeFormatter.ofLocalizedDateTime(FormatStyle.LONG);

 @Override

 public String convert(LocalDateTime value) {

 return value.format(DATE_FORMATTER);

 }

}

class StringToLocalDatetimeConverter extends StdConverter<String,

LocalDateTime> {

 @Override

 public LocalDateTime convert(String value) {

 return LocalDateTime.parse(value,

LocalDateTimeToStringConverter.DATE_FORMATTER);

 }

}

Listing 11-45 Custom Serialization and Deserialization Classes

This is all that can be said about JSON serialization with Jackson. Feel free to read more yourself if this
subject looks appealing to you.

 There is also a Jackson library for serializing Java instances to YAML, which is the new boy in town
when it comes to con�iguration �iles. The library is named jackson-dataformat-yaml.

The Media API
Beside text data, Java can be used to manipulate binary �iles such as images. The Java Media API contains a
set of image encoder/decoder (codec) classes for several popular image storage formats: BMP, GIF (decoder
only), FlashPix (decoder only), JPEG, PNG, PNM3, TIFF, and WBMP.

In Java 9, the Java media API was transformed as well and functionality to encapsulate many images with
different resolutions into a multiresolution image was added. The core of the Java Media API is the
java.awt.Image abstract class that is the super class of all classes used to represent graphical images.

The most important image representing classes and the relationships between them are depicted in Figure
11-8.

Figure 11-8 Image classes hierarchy (as shown by IntelliJ IDEA)

Although the java.awt.Image class is the root class in this hierarchy, the most used is
java.awt.BufferedImage, which is an implementation with an accessible buffer of image data. It
provides a lot of methods that can be used to create an image, to set its size and its contents, to extract its
contents and analyze them, and so much more. In this section we will make use of this class to read and
write images.

An image �ile is a complex �ile. Aside from the picture itself it contains a lot of additional information; the
most important nowadays is the location where that image was created. If you ever wondered how a social
network proposes a check-in location for an image you are posting, this is where the information is found.
This might not seem that important, but posting a picture of your cat taken in your house exposes your
location to the whole world getting their hands on it. I’m not sure what you think about it, but to me this is
terrifying. I used to post pictures of my cat sitting comfortably on the computer where I was writing this
book on my personal blog, which meant that I basically exposed my location and that of a quite expensive
laptop to the whole world. Sure, most people do not care about my cat, nor the laptop, but somebody who
might be looking to make an easy buck might. So after a friendly and knowledgeable reader sent me a
private email telling me about something called EXIF data and how he knows where I live because of the
last picture I’ve posted on my blog, I looked into it. A photo’s EXIF data contains a ton of information about
your camera and where the picture was taken (GPS coordinates). Most smartphones embed EXIF data into
pictures taken with their camera.

In Figure 11-9 you can see the EXIF information depicted by the macOS Preview application.

Figure 11-9 EXIF information on a JPG image

Notice that the EXIF info contains the exact location, latitude and longitude included, where the picture
was taken. EXIF stands for Exchangeable Image File Format and there are utilities to remove it, but when
you post a lot of pictures on your blog (like I do), it takes too much time to clean them one by one. This is
where Java comes in, and I will share with you a snippet of code I use to clean my pictures of EXIF data
(Listing 11-46).

package com.apress.bgn.eleven;

// some import statement omitted

import javax.imageio.ImageIO;

import java.awt.*;

import java.awt.image.BaseMultiResolutionImage;

import java.awt.image.BufferedImage;

import java.awt.image.MultiResolutionImage;

/**

 * Created by iuliana.cosmina on 23/07/2021

 */

public class MediaDemo {

 private static final Logger log =

LoggerFactory.getLogger(MediaDemo.class);

 public static void main(String... args) {

 File src = new File("chapter11/media-

handling/src/main/resources/input/the-beach.jpg");

 try {

 log.info(" --- Removing EXIF info ---");

 File destNoExif = new File("chapter11/media-

handling/src/main/resources/output/the-beach.jpg");

 removeExifTag(src, destNoExif);

 } catch (Exception e) {

 log.error("Something bad happened.", e);

 }

 }

 private static void removeExifTag(final File src, final File dest)

throws Exception {

 BufferedImage originalImage = ImageIO.read(src);

 ImageIO.write(originalImage, "jpg", dest);

 }

}

Listing 11-46 Code Snippet to Strip EXIF Data from Images

Removing EXIF data is pretty easy, since javax.imageio.ImageIO does not persist EXIF
information or any other information in the image �ile that is not linked to the actual image.

 In the previous edition of this book Apache Sanselan was used. This utility library provided classes
that do the stripping of the EXIF information with better performance, but unfortunately it is currently
unmaintained, and it cannot be used in a modular application.

The removeExifTag(..) method is given as an argument the source of the image and a File handler
managing the location where the new image should be saved. To test that the resulting image has no EXIF
data , just open it in an image viewer. Any option that shows EXIF should either be disabled or should
display nothing. In the Preview image viewer from macOS the option is greyed out.

Now that we got that out of the way, let’s resize the original image. To resize an image we need to create
a BufferedImage instance from the original image to get the image dimensions. After that, we modify the
dimensions and use them as arguments to create a new BufferedImage that will be populated with data
by a java.awt.Graphics2D instance, a special type of class that is used to render 2-D shapes, text, and
images. The code is depicted in the Listing 11-47. And the method is called to create an image 25% smaller,
an image 50% smaller, and one 75% smaller.

package com.apress.bgn.eleven;

import javax.imageio.ImageIO;

import java.awt.*;

import java.awt.image.BaseMultiResolutionImage;

import java.awt.image.BufferedImage;

public class MediaDemo {

 private static final Logger log =

LoggerFactory.getLogger(MediaDemo.class);

 public static void main(String... args) {

 File src = new File("chapter11/media-

handling/src/main/resources/input/the-beach.jpg");

 try {

 log.info(" --- Creating 25% image ---");

 File dest25 = new File("chapter11/media-

handling/src/main/resources/output/the-beach_25.jpg");

 resize(dest25, src, 0.25f);

 log.info(" --- Creating 50% image ---");

 File dest50 = new File("chapter11/media-

handling/src/main/resources/output/the-beach_50.jpg");

 resize(dest50, src, 0.5f);

 log.info(" --- Creating 75% image ---");

 File dest75 = new File("chapter11/media-

handling/src/main/resources/output/the-beach_75.jpg");

 resize(dest75, src, 0.75f);

 } catch (Exception e) {

 log.error("Something bad happened.", e);

 }

 }

 private static void resize(final File dest, final File src, final float

percent) throws IOException {

 BufferedImage originalImage = ImageIO.read(src);

 int scaledWidth = (int) (originalImage.getWidth() * percent);

 int scaledHeight = (int) (originalImage.getHeight() * percent);

 BufferedImage outputImage = new BufferedImage(scaledWidth,

scaledHeight, originalImage.getType());

 Graphics2D g2d = outputImage.createGraphics();

 g2d.drawImage(originalImage, 0, 0, scaledWidth, scaledHeight, null);

 g2d.dispose();

 outputImage.flush();

 ImageIO.write(outputImage, "jpg", dest);

 }

}

Listing 11-47 Code Snippet to Resize an Image

To make things easier, the ImageIO class utility methods come in handy for reading images from �iles or
for writing them to a speci�ic location. If you want to test to see that the resizing works, you can just look in
the resources directory. The output �iles have already been named accordingly, but just to make sure, you
can double-check in a �ile viewer. You should see something similar to what is depicted in Figure 11-10.

Figure 11-10 Images resized using Java code

The resulting images are not so high in quality as the original image, because compressing the pixels
does not result in high quality, but they do �it the sizes we intended.

Now that we have all these versions of the same image, we can use them to create a multiresolution
image using class BaseMultiResolutionImage introduced in Java 9. An instance of this class is created
from a set of images, all copy of a single image, but with different resolutions. This is why earlier we created
more than one resized copy of the image. A BaseMultiResolutionImage can be used to retrieve images

based on speci�ic screen resolutions and it is suitable for applications designed to be accessed from multiple
devices. Let’s see the code �irst and then explain the results (Listing 11-48).

package com.apress.bgn.eleven;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import javax.imageio.ImageIO;

import java.awt.*;

import java.awt.image.BaseMultiResolutionImage;

import java.awt.image.BufferedImage;

import java.awt.image.MultiResolutionImage;

import java.io.File;

import java.io.IOException;

public class MediaDemo {

 private static final Logger log =

LoggerFactory.getLogger(MediaDemo.class);

 public static void main(String... args) {

 File src = new File("chapter11/media-

handling/src/main/resources/input/the-beach.jpg");

 try {

 // code to create images omitted, check previous Listing

 Image[] imgList = new Image[]{

 ImageIO.read(dest25), // 500 x 243

 ImageIO.read(dest50), // 1000 x 486

 ImageIO.read(dest75), // 1500 x 729

 ImageIO.read(src) // 2000 x 972

 };

 log.info(" --- Creating multi-resolution image ---");

 File destVariant = new File("chapter11/media-

handling/src/main/resources/output/the-beach-variant.jpg");

 createMultiResImage(destVariant, imgList);

 BufferedImage variantImg = ImageIO.read(destVariant);

 log.info("Variant width x height : {} x {}",

variantImg.getWidth(), variantImg.getHeight());

 BufferedImage dest25Img = ImageIO.read(dest25);

 log.info("dest25Img width x height : {} x {}",

dest25Img.getWidth(), dest25Img.getHeight());

 log.info("Are identical? {}", variantImg.equals(dest25Img));

 } catch (Exception e) {

 log.error("Something bad happened.", e);

 }

 }

 private static void createMultiResImage(final File dest, final Image[]

imgList) throws IOException {

 MultiResolutionImage mrImage = new

BaseMultiResolutionImage(0,imgList);

 var variants = mrImage.getResolutionVariants();

 variants.forEach(i -> log.info(i.toString()));

 Image img = mrImage.getResolutionVariant(500, 200);

 log.info("Most fit to the requested size<{},{}>: <{},{}>", 500, 200,

img.getWidth(null), img.getHeight(null));

 if (img instanceof BufferedImage) {

 ImageIO.write((BufferedImage) img, "jpg", dest);

 }

 }

}

Listing 11-48 Code Snippet to Create a Multiresolution Image

The BaseMultiResolutionImage instance is created from an array of Image instances. This class is
an implementation of the MultiResolutionImage interface designed to be an optional additional API
supported by some implementations of Image to allow them to provide alternate images for various
rendering resolutions.

To be really obvious which image will be selected, the resolution of each image was put in a comment
next to it. When getResolutionVariant(..) is called, the arguments are compared to the
corresponding image properties and even if both are less than equal to one of the images, that image is
returned. In Listing 11-49, the code of the
BaseMultiResolutionImage.getResolutionVariant(..) is depicted:

@Override

public Image getResolutionVariant(double destImageWidth,

 double destImageHeight) {

 checkSize(destImageWidth, destImageHeight);

 for (Image rvImage : resolutionVariants) {

 if (destImageWidth <= rvImage.getWidth(null)

 && destImageHeight <= rvImage.getHeight(null)) {

 return rvImage;

 }

 }

 return resolutionVariants[resolutionVariants.length - 1];

}

Listing 11-49 Code for Getting an Image Variant Based on Size

The code looks suited for its purpose. If you call mrImage.getResolutionVariant(500, 200)
you get the dest25 image with resolution 500 x 243. If you call
mrImage.getResolutionVariant(500, 300) you get the dest50 image with resolution 1000 x
486, because the destImageHeight argument is 300, which is bigger than 243, so the next image in the
list with width and height bigger than the arguments is returned. But—and this is a big but—this works only
if the images in the array are sorted in the order of their sizes. If the imgList were to be modi�ied to:

Image[] imgList = new Image[]{

 ImageIO.read(src), // 2000 x 972

 ImageIO.read(dest25), // 500 x 243

 ImageIO.read(dest50), // 1000 x 486

 ImageIO.read(dest75) // 1500 x 729

 };

Then both calls return the original image, because that is the �irst one in the list, and width is bigger then
500 and height is bigger than both 200 and 300.

So if the algorithm is not ef�icient and it depends on the order of the images in the array used to create
the multiresolution image, what can be done? It’s simple: we can create our own
MultiResolutionImage implementation that extends BaseMultiResolutionImage and overrides

the getResolutionVariant() method . Since we know that all images are resized copies of the same
image, this means that width and height are proportional. So an algorithm that will always return the variant
of the image that is most suitable to the desired resolution can be written that will not really care of the
order of the images in the array and that will return the image that �its most. The implementation might look
quite similar to the one in Listing 11-50.

package com.apress.bgn.eleven;

// other import statements omitted

import java.awt.image.BaseMultiResolutionImage;

public class SmartMultiResolutionImage extends BaseMultiResolutionImage {

 public SmartMultiResolutionImage(int baseImageIndex, Image...

resolutionVariants) {

 super(baseImageIndex, resolutionVariants);

 }

 @Override

 public Image getResolutionVariant(double destImageWidth,

 double destImageHeight) {

 checkSize(destImageWidth, destImageHeight);

 Map<Double, Image> result = new HashMap<>();

 for (Image rvImage : getResolutionVariants()) {

 double widthDelta = Math.abs(destImageWidth -

rvImage.getWidth(null));

 double heightDelta = Math.abs(destImageHeight -

rvImage.getHeight(null));

 double delta = widthDelta + heightDelta;

 result.put(delta, rvImage);

 }

 java.util.List<Double> deltaList = new ArrayList<>(result.keySet());

 deltaList.sort(Double::compare);

 return result.get(deltaList.get(0));

 }

 private static void checkSize(double width, double height) {

 if (width <= 0 || height <= 0) {

 throw new IllegalArgumentException(String.format(

 "Width (%s) or height (%s) cannot be <= 0", width,

height));

 }

 if (!Double.isFinite(width) || !Double.isFinite(height)) {

 throw new IllegalArgumentException(String.format(

 "Width (%s) or height (%s) is not finite", width,

height));

 }

 }

}

Listing 11-50 Better Code for Getting an Image Variant Based on Size

The checkSize(..) method must be duplicated, as it is private and used inside
getResolutionVariant(..), so it cannot be called inside a superclass, but that is a minor
inconvenience to having an implementation that has a proper behavior. With the previous implementation,

we no longer need a sorted array, thus calls to getResolutionVariant(500, 200),
getResolutionVariant(500, 300), getResolutionVariant(400, 300), and
getResolutionVariant(600, 300) all return image dest25.

To use the new class, in Listing 11-48 this line:

MultiResolutionImage mrImage = new BaseMultiResolutionImage(0,imgList);

must be replaced with

MultiResolutionImage mrImage = new SmartMultiResolutionImage(0, imgList);

You can reposition the images in the imgList array too, if you want to test it properly. Then running the
MediaDemo class produces the output depicted in Listing 11-51.

[main] INFO MediaDemo - --- Creating multi-resolution image ---

[main] INFO MediaDemo - BufferedImage@47c62251: type = 5 ColorModel:

#pixelBits = 24 numComponents = 3 color space =

java.awt.color.ICC_ColorSpace@e25b2fe transparency = 1 has alpha = false

isAlphaPre = false ByteInterleavedRaster: width = 2000 height = 972

#numDataElements 3 dataOff[0] = 2

[main] INFO MediaDemo - BufferedImage@3c0ecd4b: type = 5 ColorModel:

#pixelBits = 24 numComponents = 3 color space =

java.awt.color.ICC_ColorSpace@e25b2fe transparency = 1 has alpha = false

isAlphaPre = false ByteInterleavedRaster: width = 500 height = 243

#numDataElements 3 dataOff[0] = 2

[main] INFO MediaDemo - BufferedImage@14bf9759: type = 5 ColorModel:

#pixelBits = 24 numComponents = 3 color space =

java.awt.color.ICC_ColorSpace@e25b2fe transparency = 1 has alpha = false

isAlphaPre = false ByteInterleavedRaster: width = 1000 height = 486

#numDataElements 3 dataOff[0] = 2

[main] INFO MediaDemo - BufferedImage@5f341870: type = 5 ColorModel:

#pixelBits = 24 numComponents = 3 color space =

java.awt.color.ICC_ColorSpace@e25b2fe transparency = 1 has alpha = false

isAlphaPre = false ByteInterleavedRaster: width = 1500 height = 729

#numDataElements 3 dataOff[0] = 2

[main] INFO MediaDemo - Most fit to the requested size<500,200>: <500,243>

[main] INFO MediaDemo - Are identical? false

Listing 11-51 Output Produced By Running the MediaDemo

Wait, what? Why are the images not identical? They do have the same resolution, but as objects they are
not identical because drawing pixels is not really that precise. But if you really want to make sure, you could
print the width and height of the two images and open them with an image viewer, and with the naked eye
you would see they look identical, using code like this:

log.info("variant width x height : {} x {}", variantImg.getWidth(),

 variantImg.getHeight());

log.info("dest25Img width x height : {} x {}", dest25Img.getWidth(),

 dest25Img.getHeight());

The previous code prints the width and height of the two images, making it obvious that the two images
have the same dimensions, just as expected.

[main] INFO MediaDemo - variant width x height : 500 x 243

[main] INFO MediaDemo - dest25Img width x height : 500 x 243

Anyway, as you’ve noticed most of the images classes are part of the old java.awt, which is rarely used
nowadays and is known to be quite slow. So if you want to build an application and image processing is
required, you might want to look for alternatives. One of such alternatives is using JavaFx, presented in the
following section.

Using JavaFX Image Classes
Beside the Java Media API that is centered on components of the java.awt package, another way to display
and edit images is provided by JavaFX. The core class for the javafx.scene.image package is named
Image and can be used to handle images in a few common formats: PNG, JPEG, BMP, GIF, and others. JavaFX
applications display images using an instance of javafx.scene.image.ImageView and the part that I
like most about this class is that the images can be also displayed scaled, without the original image being
modi�ied.

To create a javafx.scene.image.Image instance all we need is either a FileInputStream
instance to read the image from the user-provided location, or a URL location given as String. The code
snippet in Listing 11-52 creates a JavaFX application that displays an image with its original width and
height, which can be accessed using methods in class javafx.scene.image.Image.

package com.apress.bgn.eleven;

import javafx.application.Application;

import javafx.geometry.Rectangle2D;

import javafx.scene.Scene;

import javafx.scene.image.Image;

import javafx.scene.image.ImageView;

import javafx.scene.layout.StackPane;

import javafx.stage.Stage;

import java.io.File;

import java.io.FileInputStream;

public class JavaFxMediaDemo extends Application {

 public static void main(String... args) {

 Application.launch(args);

 }

 @Override

 public void start(Stage primaryStage) throws Exception {

 primaryStage.setTitle("JavaFX Image Demo");

 File src = new File("chapter11/media-

handling/src/main/resources/cover.png");

 Image image = new Image(new FileInputStream(src));

 ImageView imageView = new ImageView(image);

 imageView.setFitHeight(image.getHeight());

 imageView.setFitWidth(image.getWidth());

 imageView.setPreserveRatio(true);

 //Creating a Group object

 StackPane root = new StackPane();

 root.getChildren().add(imageView);

 primaryStage.setScene(new Scene(root,

 image.getWidth()+10,

 image.getHeight()+10));

 primaryStage.show();

 }

}

Listing 11-52 Using JavaFX to Display Images

The Image instance cannot be added to the Scene of the JavaFX instance directly, as it does not extend
the Node abstract class that is required to be implemented by all JavaFX elements that make a
JavaFxApplication. That is why this instance must be wrapped in a
javafx.scene.image.ImageView instance that is a class extending Node, and it is a specialized class
for rendering images loaded with Image class.

This class resizes the displayed image, with or without preserving the original aspect ratio, by calling the
setPreserveRatio(..) method with the appropriate argument, true to keep the original aspect ratio,
false otherwise.

 Check out Chapter 10 to learn how to install the JavaFX for your system, so the examples in this
chapter can be run correctly.

As you can see, in the previous code we use the values retuned by image.getWidth() and
image.getHeight() to set the size of the ImageView object and the size of the Scene instance. But
let’s get creative and display the scaled image, still preserving the aspect ratio and also using a better-quality
�iltering algorithm when scaling the image by using the smooth(..) method , as shown here.

...

ImageView imageView = new ImageView(image);

imageView.setFitWidth(100);

imageView.setPreserveRatio(true);

imageView.setSmooth(true);

...

Another thing that the ImageView class can do is to support a Rectangle2D view port that can be
used to rotate the image.

...

ImageView imageView = new ImageView(image);

Rectangle2D viewportRect = new Rectangle2D(2, 2, 600, 600);

imageView.setViewport(viewportRect);

imageView.setRotate(90);

...

Being an implementation of node ImageView supports clicking events, and it is quite easy to write
some code to resize an image on click. Just take a look at code in Listing 11-53.

...

 ImageView imageView = new ImageView(image);

 imageView.setFitHeight(image.getHeight());

 imageView.setFitWidth(image.getWidth());

 imageView.setPreserveRatio(true);

 root.getChildren().add(imageView);

 imageView.setPickOnBounds(true);

 imageView.setOnMouseClicked(mouseEvent -> {

 if(imageView.getFitWidth() > 100) {

 imageView.setFitWidth(100);

 imageView.setPreserveRatio(true);

 imageView.setSmooth(true);

 } else {

 imageView.setFitHeight(image.getHeight());

 imageView.setFitWidth(image.getWidth());

 imageView.setPreserveRatio(true);

1

2

3

4

5

 }

 });

...

Listing 11-53 Using JavaFX to Resize Images on Click Events

In the previous code snippet by calling the setOnMouseClicked(..) we attached an
EventHandler<? super MouseEvent> instance to the mouse clicking event on the imageView. The
EventHandler<T extends MouseEvent> is a functional interface containing a single method named
handle, and its concrete implementation is the body of the lambda expression in the previous code listing.

As JavaFX was taken out of JDK 11, there is no real value into going over more image processing classes
in this section. But if you are interested in learning more about this subject, this tutorial from Oracle should
do the job: https://docs.oracle.com/javafx/2/image_ops/jfxpub-image_ops.htm. Also,
as practice, you can try writing your own code based on the code in the book to add a mouse event that
rotates the image. This is all the space we can dedicate for playing with images in the Java. I hope you found
this section useful and that you might get the chance to test your Java Media API skills in the future—if not
for anything else, at least for cleaning EXIF data from your images.

Summary
This chapter has covered most of the details you need to know to be able to work with various types of �iles,
how to serialize Java objects and save them to a �ile, and then recover them through deserialization. When
writing Java applications you will most likely need to save data to �iles or read data from �iles, and this
chapter provided quite a wide list of components to do so. This is a short summary of this chapter:

how to use File and Path instances
how to use utility methods in Files and Paths
how to serialize/deserialize Java objects to/from binary, XML, and JSON
how to resize and modify images using the Java Media API
how to use images in JavaFX applications

Footnotes
See the of�icial java.io package Javadoc page at Oracle,

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/io/package-summary.html; see the of�icial
java.nio package Javadoc page at Oracle,
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/nio/package-summary.html, both accessed
October 15, 2021.

See the of�icial page at Apache Commons, “Apache Commons IO,” https://commons.apache.org/proper/commons-io, accessed

October 15, 2021.

See the Project Amber of�icial page at OpenJDK, http://openjdk.java.net/projects/amber, accessed October 15, 2021.

Its successor, JAXB2 is now part of JEE; see Java Enterprise Edition, JAXB,” https://javaee.github.io/jaxb-v2/, accessed October

15, 2021.

See the of�icial page at Github, “FasterXML Jackson,” https://github.com/FasterXML/jackson, accessed October 15, 2021.

https://docs.oracle.com/javafx/2/image_ops/jfxpub-image_ops.htm
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/io/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/nio/package-summary.html
https://commons.apache.org/proper/commons-io
http://openjdk.java.net/projects/amber
https://javaee.github.io/jaxb-v2/
https://github.com/FasterXML/jackson

(1)

© Iuliana Cosmina 2022
I. Cosmina, Java 17 for Absolute Beginners
https://doi.org/10.1007/978-1-4842-7080-6_12

12. The Publish-Subscribe Framework

Iuliana Cosmina1

Edinburgh, UK

All the programming concepts explained so far in the book involved data that
needed to be processed. Regardless of the form in which data is provided, the Java
programs we’ve written so far took that data, modi�ied it, and printed out the
results, whether to console, �iles, or another software component. You could say
that all these components were communicating with each other and passing
processed data from one to another. For example, take Figure 12-1, which abstractly
describes the interaction between Java components in a program.

Figure 12-1 Interactions between Java components within a program

On each of the arrows is marked with the type of information being passed from
one to another. In this image you can identify a starting point where information
enters the program, by being read by the Reader and an end point where the
information is printed to some output component by the Printer. You could say
that the Reader provides the data, the Filter and the DocumentCreator are
some internal processors, and processing the data and the Printer is the
consumer of the data.

What was described so far is something resembling a point-to-point (p2p)
messaging model , which describes a concept of one message being send to one
consumer. The p2p model is speci�ic to a Java API named Java Message Service
(JMS) that supports the formal communication known as messaging between
computers in a network. In the example that begins this chapter, an analogy was
made to show that communication between components of a Java Program works in
a similar manner. The design of a solution to implement a process as described by
the previous �igure could be created by considering all components linked into a
messaging style communication model.

https://doi.org/10.1007/978-1-4842-7080-6_12

There is more than one communication model: producer/consumer,
publish/subscribe, and sender/receiver, each with its own speci�ics,1 but the one
this chapter is focused on is the publish/subscribe, because this is the model the
reactive programming is based on.

Reactive Programming and the Reactive Manifesto
Reactive programming is a declarative programming style that involves using data
streams and propagation of change. Reactive programming is programming with
asynchronous data streams. Reactive streams is an initiative to provide a standard
for asynchronous stream processing with nonblocking back-pressure. They are
extremely useful for solving problems that require complex coordination across
thread boundaries. The operators allow you to gather your data on to the desired
threads and ensures thread-safe operations without requiring, in most cases,
excessive uses of synchronized and volatile constructs.

Java took a step toward reactive programming after introducing the Streams API
in version 8, but reactive streams were not available until version 9. We’ve already
learned how to use streams a few chapters ago (Chapter 8), so we’re one step
closer. Now all we must do is understand how to use reactive streams do to some
reactive programming.

Using reactive streams is not a new idea. The Reactive Manifesto was �irst made
public in 2014,2 and it made a request for software to be developed in such a way
that systems are Responsive, Resilient, Elastic and Message Driven—in short,
they should be Reactive.

Each of the four terms is shortly explained here:

Responsive: should provide fast and consistent response times.
Resilient: should remain responsive in case of failure and be able to recover.
Elastic: should remain responsive and be able to handle various workloads.
Message Driven: should communicate using asynchronous messages, avoid
blocking, and applying backpressure when necessary.

Systems designed this way are supposed to be more �lexible, loosely coupled,
and scalable, but at the same time they should be easier to develop, amendable to
change, and more tolerant of failure. To be able to accomplish all that, the systems
need a common API for communication. Reactive streams is an initiative to provide
such a standard API for asynchronous, nonblocking stream processing that also
supports back-pressure. We’ll explain what back-pressure means in a moment.
Let’s start with the basics of reactive stream processing.

Any type of stream processing involves a producer of data, a consumer of data,
and components in the middle between them that process the data. Obviously, the
direction of the data �low is from the producer to the consumer. The abstract
schema of a system that was described so far is depicted in Figure 12-2.

Figure 12-2 Producer/consumer system

The system might end up in a pickle when the producer is faster than the
consumer, so the extra data that cannot be processed must be dealt with. There is
more than one way of doing that:

the extra data is discarded (this is done in network hardware).
the producer is blocked so the consumer has time to catch up.
the data is buffered, but buffers are limited and if we have a fast producer and a
slow consumer there is a danger of the buffer over�lowing.
applying back-pressure , which involves giving the consumer the power to
regulate the producer and control how much data is produced. Back-pressure can
be viewed as a message being sent from the consumer to the producer to let it
know it has to slow its data production rate. With this in mind, we can complete
the design in the previous image, which will result in Figure 12-3.

Figure 12-3 Reactive producer/consumer system

If producer, processors, and consumer are not synchronized, solving the
problem of too much data by blocking until each one is ready to process it is not an
option, as it would transform the system into a synchronous one. Discarding it is not
an option either, and buffering is unpredictable, so all we’re left with for a reactive
system is applying nonblocking back-pressure .

 If the software example is too puzzling for you, imagine the following

scenario. You have a friend named Jim. You also have a bucket of differently
colored balls. Jim tells you to give him all the red balls. You have two ways of
doing this:

1.
You pick all the red balls, put them in another bucket, and hand the bucket
to Jim. This is the typical request—complete response model. It is an
asynchronous model, and if selecting the red balls takes too long, Jim just
goes and does other things while you do the sorting and when you are
done, you just notify him his bucket of red balls is ready. It is

asynchronous because Jim is not blocked by you sorting the balls but goes
and does other things and gets them when they are ready.

2.
You just get the red balls one by one from your bucket and throw them at
Jim. This is your data �low, or a ball �low, in this case. If you are faster at
�inding them and throwing them than Jim is at catching them, you have a
blockage. So Jim tells you to slow down. This is him regulating the �low of
balls, which is the real-world equivalent of back-pressure.

Writing applications that can be aggregated in reactive systems was not possible
in Java before version 9, so developers had to make do with external libraries. A
reactive application must be designed according to principle of reactive
programming and use reactive streams for handling the data. The standard API for
reactive programming was �irst described by the reactive-streams library that
could be used with Java 8 as well. In Java 9, the standard API was added to the JDK
and the next version of the reactive-streams included a set of classes declared
nested into the org.reactivestreams.FlowAdapters class that represent
bridges between the analogous components in the two APIs (the Reactive Streams
API and the Reactive Streams Flow API).

In Figure 12-4 you can see the interfaces that are meant to be implemented by
components with the roles de�ined previously.

Figure 12-4 Reactive streams interfaces (as shown in IntelliJ IDEA)

The reactive streams API is made of four very simple interfaces:

interface Publisher<T> exposes one method named void
subscribe(Subscriber<? super T>), which is called to add a
Subscriber<T> instance and produces elements of type T that will be
consumed by the Subscriber<T>. The purpose of a Publisher<T>

implementation is to publish values according to the demand received from its
subscribers.
interface Subscriber<T>, consumes elements from the Publisher<T> and
exposes four methods that must be implemented to de�ine concrete behavior of
the instance depending on the event type received by the Publisher<T>
instance.

– void onSubscribe(Subscription) is the �irst method called on a
subscriber and this is the methods that links the Publisher<T> to the
Subscriber<T> instance using the Subscription argument; if this
method throws an exception the following behavior is not guaranteed.

– void onNext(T) is the method invoked with a Subscription’s next item
to receive the data; if it throws an exception, the Subscription might be
cancelled.

– void onError(Throwable) is the method invoked upon an unrecoverable
error encountered by a Publisher<T> or Subscription<T>.

– void onComplete() is the method called when there is no more data to
consume, thus no additional Subscriber<T> method invocations will occur.

interface Processor<T,R> extends both Publisher<T> and
Subscriber<R>, because it needs to consume data and produce it to send it
further upstream.
interface Subscription’s implementation links the Publisher<T> and the
Subscriber<T> and can be used to apply back-pressure by calling the
request(long) to set the number of items to be produced and sent to the
consumer. It also allows the cancellation of a �low, by calling the cancel()
method to tell a Subscriber<T> to stop receiving messages.

In the JDK all the previously listed interfaces are de�ined within the
java.util.concurrent.Flow class. The name of this class is obvious in
nature, as the previous interfaces are used to create �low-controlled components
that can be linked together to create a reactive application. Aside from these four
interfaces there is a single JDK implementation: the
java.util.concurrent.SubmissionPublisher<T> class implementing
Publisher<T>, which is a convenient base for subclasses that generate items and
use the methods in this class to publish them.

The Flow interfaces are quite basic and can be used when writing reactive
applications, but this requires a lot of work. Currently there are multiple
implementations, by various teams, that provide a more practical way to develop
reactive applications. Using implementation of these interfaces, you can write
reactive applications without needing to write the logic for synchronization of
threads processing the data.

The following list contains the most well-known reactive streams API
implementations (and there are more, because in a big-data world reactive
processing is no longer a luxury but a necessity):

Project Reactor (https://projectreactor.io) embraced by Spring for its
Web Reactive Framework
Akka Streams
(https://doc.akka.io/docs/akka/current/stream/stream-
flows-and-basics.html)
MongoDB Reactive Streams Java Driver
(http://mongodb.github.io/mongo-java-driver-
reactivestreams)
Ratpack (https://ratpack.io)
RxJava (http://reactivex.io)

Using the JDK Reactive Streams API
As the JDK provided interfaces for reactive programming are quite basic,
implementation is quite cumbersome, but nevertheless in this section an attempt is
being made. In this section we will be trying to build an application that generates
an in�inite number of integer values. Filter these values and select the ones that are
smaller than 127. For the ones that are even and between 98 and 122, subtract 32
(basically converting small letters to upper case). Then convert them to a character
and print them. The most basic solution, without reactive streams is depicted in
Listing 12-1.

package com.apress.bgn.twelve.dummy;

// some input statements omitted

import java.security.SecureRandom;

public class BasicIntTransformer {

 private static final Logger log =

LoggerFactory.getLogger(BasicIntTransformer.class);

 private static final SecureRandom random = new

SecureRandom();

 public static void main(String... args) {

 while (true){

 int rndNo = random.nextInt(130);

 if (rndNo < 127) {

 log.info("Initial value: {} ", rndNo);

https://projectreactor.io/
https://doc.akka.io/docs/akka/current/stream/stream-flows-and-basics.html
http://mongodb.github.io/mongo-java-driver-reactivestreams
https://ratpack.io/
http://reactivex.io/

 if(rndNo % 2 == 0 && rndNo >=98 && rndNo

<=122) {

 rndNo -=32;

 }

 char res = (char) rndNo;

 log.info("Result: {}", res);

 } else {

 log.debug("Number {} discarded.", rndNo);

 }

 }

 }

}

Listing 12-1 Generating an In�inite Number of Integers <127

Each line of code in the previous code listing has a purpose, a desired outcome.
This approach is called imperative programming, because it sequentially executes a
series of statements to produce a desired output.

However, this is not what we are aiming for. In this section we will implement a
reactive solution using implementations of the JDK reactive interfaces, so we’ll need
the following:

A publisher component that makes use of an in�inite stream to generate random
integer values. The class should implement the Flow.Publisher<Integer>
interface.
A processor that selects only integer values that can be converted to visible
characters, let’s say all characters with codes between [0,127). The class should
implement the Flow.Processor<Integer, Integer>.
A processor that modi�ied elements received and that are even, and between 98
and 122, by subtracting 32. This class should also implement the
Flow.Processor<Integer, Integer>.
A processor that will transform integer elements into the equivalent characters.
This is a special type or processor that maps one value to another of another
type, and should implement Flow.Processor<Integer, Character>.
A subscriber that will print the received elements from the last processor in the
chain. This class will implement the Flow.Subscriber<Character>
interface.

Let’s start by declaring the Publisher<T> that will wrap around an in�inite
stream to produce values to be consumed. We will implement the
Flow.Publisher<Integer> interface by providing a full concrete
implementation to submit the elements asynchronously. To buffer them in case of
need a lot of code would need to be added. Fortunately the class
SubmissionPublisher<T> does that already, so internally, in our class we’ll

make use of a SubmissionPublisher<Integer> object. The code for the
publisher is depicted in Listing 12-2.

package com.apress.bgn.twelve.jdkstreams;

import java.util.Random;

import java.util.concurrent.Flow;

import java.util.concurrent.SubmissionPublisher;

import java.util.stream.IntStream;

public class IntPublisher implements

Flow.Publisher<Integer> {

 private static final Random random = new Random();

 protected final IntStream intStream;

 public IntPublisher(int limit) {

 intStream = limit == 0 ? IntStream.generate(() ->

random.nextInt(150)) :

 IntStream.generate(() ->

random.nextInt(150)).limit(30);

 }

 private final SubmissionPublisher<Integer>

submissionPublisher = new SubmissionPublisher<>();

 @Override

 public void subscribe(Flow.Subscriber<? super Integer>

subscriber) {

 submissionPublisher.subscribe(subscriber);

 }

 public void start() {

 intStream.forEach(element -> {

 submissionPublisher.submit(element);

 sleep();

 });

 }

 private void sleep() {

 try {

 Thread.sleep(1000);

 } catch (InterruptedException e) {

 throw new RuntimeException("could not sleep!");

 }

 }

}

Listing 12-2 Publisher Generating an In�inite Number of Integers

 Notice how the constructor of the IntPublisher class takes a single

argument. If the value provided as argument at instantiation time is 0(ZERO), an
in�inite stream is created. If the argument value is different than 0, a �inite stream
is created. This is useful if you want to run the example and not forcefully stop
the execution.

As expected, we’ve provided an implementation for the subscribe() method
and in this case what we have to do is just to forward the subscriber to the
internal submissionPublisher. Since we’ve created our publisher by wrapping
it around submissionPublisher this is necessary, otherwise our �low won’t
work as expected. Also, we’ve added a start() method that takes elements from
the in�inite IntStream and submits them using the internal
submissionPublisher.

The IntStream makes use of a Random instance to generate integer values in
the [0,150] interval. This interval is chosen so that we can see how values bigger
than 127 are discarded by the �irst Flow.Processor<T,R> instance connected
to the publisher. To be able to slow down the elements submission we added a call
to Thread.sleep(1000) that basically guarantees one element per second will
be forwarded up the chain.

The name of the �irst processor will be FilterCharProcessor and will make
use of an internal SubmissionPublisher<Integer> instance to send the
elements it processes onward to the next processor.

Exceptions thrown will be also forwarded using the
SubmissionPublisher<Integer>. The processor acts as a publisher but as a
subscriber as well, so the implementation on the onNext(..) method will have to
include a call to subscription.request(..) to apply back pressure. From the
�igures presented earlier in the chapter you could see that the processor is basically
a component that allows data �low in both directions, and it does that by
implementing both Publisher<T> and Subscriber<T>.

The processor must subscribe to the publisher and when the publisher
subscribe(..) method is called, will cause the
onSubscribe(Flow.Subscription subscription) method to be invoked.
The subscription must be stored locally, so that it can be used to apply back
pressure. But when accepting a subscription we must make sure that the �ield was
not already initialized, because according to reactive streams speci�ication there can
only be one subscriber for a publisher, otherwise the results are unpredictable. If

and when a new subscription arrives it must be cancelled, and this is done by
calling cancel(). The full code for the processor is depicted in Listing 12-3.

package com.apress.bgn.twelve.jdkstreams;

import java.util.concurrent.Flow;

import java.util.concurrent.SubmissionPublisher;

// some input statements omitted

public class FilterCharProcessor implements

Flow.Processor<Integer, Integer> {

 private static final Logger log =

LoggerFactory.getLogger(FilterCharProcessor.class);

 private final SubmissionPublisher<Integer>

submissionPublisher = new SubmissionPublisher<>();

 private Flow.Subscription subscription;

 @Override

 public void subscribe(Flow.Subscriber<? super Integer>

subscriber) {

 submissionPublisher.subscribe(subscriber);

 }

 @Override

 public void onSubscribe(Flow.Subscription subscription)

{

 if (this.subscription == null) {

 this.subscription = subscription;

 // apply back pressure - request one element

 this.subscription.request(1);

 } else {

 subscription.cancel();

 }

 }

 @Override

 public void onNext(Integer element) {

 if (element >=0 && element < 127){

 submit(element);

 } else {

 log.debug("Element {} discarded.", element);

 }

 subscription.request(1);

 }

 @Override

 public void onError(Throwable throwable) {

 submissionPublisher.closeExceptionally(throwable);

 }

 @Override

 public void onComplete() {

 submissionPublisher.close();

 }

 protected void submit(Integer element){

 submissionPublisher.submit(element);

 }

}

Listing 12-3 Flow.Processor<T,R> Implementation FilterCharProcessor<Integer,Integer> That
Filters Integers > 127

This processor is very speci�ic, and a processing �low usually requires more than
one. In this scenario we need a few, and since beside the onNext(..) method the
rest of the implementation is mostly boilerplate code that allows for processors to
be linked together in the �low we are designing, it would be more practical to wrap
up this code in an AbstractProcessor that all processors needed for this
solution can extend.

As the last processor in the �low needs to convert the received Integer value
to a Character, the returned type of this implementation is to be kept generic.
The code is depicted in Listing 12-4.

package com.apress.bgn.twelve.jdkstreams;

import java.util.concurrent.Flow;

import java.util.concurrent.SubmissionPublisher;

public abstract class AbstractProcessor<T> implements

Flow.Processor<Integer, T> {

 protected final SubmissionPublisher<T>

submissionPublisher = new SubmissionPublisher<>();

 protected Flow.Subscription subscription;

 @Override

 public void subscribe(Flow.Subscriber<? super T>

subscriber) {

 submissionPublisher.subscribe(subscriber);

 }

 @Override

 public void onSubscribe(Flow.Subscription subscription)

{

 if (this.subscription == null) {

 this.subscription = subscription;

 // apply back pressure - ask one or more than

one

 this.subscription.request(1);

 } else {

 // avoid more than one Publisher sending

elements to this Subscriber

 // do not accept other subscriptions

 subscription.cancel();

 }

 }

 @Override

 public void onError(Throwable throwable) {

 submissionPublisher.closeExceptionally(throwable);

 }

 @Override

 public void onComplete() {

 submissionPublisher.close();

 }

 protected void submit(T element) {

 submissionPublisher.submit(element);

 }

}

Listing 12-4 AbstractProcessor<Integer,T> Implementation

This simpli�ies the implementation of the
FilterCharProcessor<Integer, Integer> and the other processors as
well. The FilterCharProcessor<Integer, Integer> simpli�ied
implementation is depicted in Listing 12-5.

package com.apress.bgn.twelve.jdkstreams;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

public class FilterCharProcessor extends

AbstractProcessor<Integer> {

 private static final Logger log =

LoggerFactory.getLogger(FilterCharProcessor.class);

 @Override

 public void onNext(Integer element) {

 if (element >= 0 && element < 127) {

 submit(element);

 } else {

 log.debug("Element {} discarded.", element);

 }

 subscription.request(1);

 }

}

Listing 12-5 FilterCharProcessor Extending AbstractProcessor<Integer>

We have a publisher and a processor, so now what? We connect them, of course.
The dots (..) in Listing 12-6 replace all the processors and the subscribers being
connected to each other that are yet to be built in this section.

package com.apress.bgn.twelve.jdkstreams;

public class ReactiveDemo {

 public static void main(String... args) {

 IntPublisher publisher = new IntPublisher(0);

 FilterCharProcessor filterCharProcessor = new

FilterCharProcessor();

 publisher.subscribe(filterCharProcessor);

 // ..

 publisher.start();

 }

}

Listing 12-6 Executing a Reactive Flow

The next processor implementation is the one that transforms smaller letters in
big letters by subtracting 32. It can be easily implemented by extending
AbstractProcessor<Integer, T> as well, and the implementation is
depicted in Listing 12-7.

package com.apress.bgn.twelve.jdkstreams;

public class TransformerProcessor extends

AbstractProcessor<Integer>{

 @Override

 public void onNext(Integer element) {

 if(element % 2 == 0 && element >=98 && element

<=122) {

 element -=32;

 }

 submit(element);

 subscription.request(1);

 }

}

Listing 12-7 The TransformerProcessor Implementation

To plug in this processor in the �low, we just need instantiate it and call the
filterCharProcessor.subscribe(..) and provide this instance as an
argument. Listing 12-8 shows the next step in creating our reactive �low.

package com.apress.bgn.twelve.jdkstreams;

public class ReactiveDemo {

 public static void main(String... args) {

 IntPublisher publisher = new IntPublisher(0);

 FilterCharProcessor filterCharProcessor = new

FilterCharProcessor();

 TransformerProcessor transformerProcessor = new

TransformerProcessor();

 publisher.subscribe(filterCharProcessor);

 filterCharProcessor.subscribe(transformerProcessor);

 // ..

 publisher.start();

 }

}

Listing 12-8 A TransformerProcessor Instance Being Added to a Reactive Flow

The next one to implement is the �inal processor that we need for this solution
and is the one that converts an Integer value to a String value. To keep the
implementation as declarative as possible, the processor will be provided the
mapping function as an argument. The code is shown in Listing 12-9.

package com.apress.bgn.twelve.jdkstreams;

import java.util.function.Function;

public class MappingProcessor extends

AbstractProcessor<Character> {

 private final Function<Integer, Character> function;

 public MappingProcessor(Function<Integer, Character>

function) {

 this.function = function;

 }

 @Override

 public void onNext(Integer element) {

 submit(function.apply(element));

 subscription.request(1);

 }

}

Listing 12-9 The MappingProcessor Implementation

In Listing 12-10, you can see a MappingProcessor instance being added to
the reactive �low.

package com.apress.bgn.twelve.jdkstreams;

public class ReactiveDemo {

 public static void main(String... args) {

 IntPublisher publisher = new IntPublisher();

 FilterCharProcessor filterCharProcessor = new

FilterCharProcessor();

 TransformerProcessor transformerProcessor = new

TransformerProcessor();

 MappingProcessor mappingProcessor =

 new MappingProcessor(element ->

(char) element.intValue());

 publisher.subscribe(filterCharProcessor);

 filterCharProcessor.subscribe(transformerProcessor);

 transformerProcessor.subscribe(mappingProcessor);

 //...

 publisher.start();

 }

}

Listing 12-10 A MappingProcessor Instance Being Added to a Reactive Flow

The last component of this �low is the subscriber. The subscriber is the most
important component in a �low; until a subscriber is added to it and a
Subscription instance is created, nothing actually happens. Our subscriber
implements the Flow.Subscriber<Character>, and most of it is identical to
the code we’ve isolated in the AbstractProcessor<T>, which might look a little
bit redundant, but makes things very easy as well. Listing 12-11 depicts the
Subscriber implementation.

package com.apress.bgn.twelve.jdkstreams;

// some import statements omitted

import java.util.concurrent.Flow;

public class CharPrinter implements

Flow.Subscriber<Character> {

 private static final Logger log =

LoggerFactory.getLogger(CharPrinter.class);

 private Flow.Subscription subscription;

 @Override

 public void onSubscribe(Flow.Subscription subscription)

{

 if (this.subscription == null) {

 this.subscription = subscription;

 this.subscription.request(1);

 } else {

 subscription.cancel();

 }

 }

 @Override

 public void onNext(Character element) {

 log.info("Result: {}", element);

 subscription.request(1);

 }

 @Override

 public void onError(Throwable throwable) {

 log.error("Something went wrong.", throwable);

 }

 @Override

 public void onComplete() {

 log.info("Printing complete.");

 }

}

Listing 12-11 Subscriber<Character> Implementation

Using this subscriber class, the �low can now be completed as shown in Listing
12-12.

package com.apress.bgn.twelve.jdkstreams;

public class ReactiveDemo {

 public static void main(String... args) {

 IntPublisher publisher = new IntPublisher(0);

 FilterCharProcessor filterCharProcessor = new

FilterCharProcessor();

 TransformerProcessor transformerProcessor = new

TransformerProcessor();

 MappingProcessor mappingProcessor = new

MappingProcessor(element -> (char) element.intValue());

 CharPrinter charPrinter = new CharPrinter();

 publisher.subscribe(filterCharProcessor);

 filterCharProcessor.subscribe(transformerProcessor);

 transformerProcessor.subscribe(mappingProcessor);

 mappingProcessor.subscribe(charPrinter);

 publisher.start();

 }

}

Listing 12-12 Reactive Pipeline Complete Implementation

It would be nice if the subscribe(..) method would return the caller
instance so that we could chain the subscribe(..) calls, but we work with what
is provided for us. When the previous code is run, a log similar to the one depicted
in Listing 12-13 is printed in the console:

...

INFO c.a.b.t.j.CharPrinter - Result: .

INFO c.a.b.t.j.CharPrinter - Result: ,

INFO c.a.b.t.j.CharPrinter - Result: A

DEBUG c.a.b.t.j.FilterCharProcessor - Element 147

discarded.

DEBUG c.a.b.t.j.FilterCharProcessor - Element 127

discarded.

INFO c.a.b.t.j.CharPrinter - Result: E

INFO c.a.b.t.j.CharPrinter - Result: Z

...

Listing 12-13 Console Output of a Reactive Flow Being Executed

The previous example uses an in�inite IntStream to generate elements to be
published, processed, and consumed. This leads to the execution program running
forever, so you will have to stop it manually. Another consequence of this is that the
onComplete() methods will never be called. If we want to use it we must make

sure the number of items being published is a �inite one, but initializing the
IntPublisher with a value different than 0(ZERO).

Another thing to mention is that back-pressure handling is done more in a
conceptual way. The Flow API doesn’t provide any mechanism to signal about back-
pressure or to deal with it. So the subscription.request(1) just makes sure
that when onNext(..) is called, the element producing rate is reduced to one.
Various strategies can be devised to deal with back-pressure based on the �ine-
tuning of the subscriber, but it is dif�icult to show something like this in a very
simple example that does not involve two microservices reactively interacting with
each other.

Support for reactive streams is quite thin in the JDK, even in version 17, released
on September 14, 2021. It was expected that more useful classes will be added in
future versions, but apparently Oracle is focused on other aspects, such as
reorganizing the module structure and deciding how to better monetize usage of
the JDK. That is why the last section of this chapter covers a short example of
reactive programming done with the Project Reactor library.

Reactive Streams Technology Compatibility Kit
When building applications that use reactive streams, a lot of things can go wrong.
To make sure things go as expected, the Reactive Streams Technology
Compatibility Kit project , also known as TCK,3 is a very useful library to write
tests. This library contains classes that can be used to test reactive implementations
against the reactive streams speci�ications. TCK is intended to verify the interfaces
contained in the JDK java.util.concurrent.Flow class and for some reason
the team that created the library decide to use TestNG as a testing library.

 In version 1.0.3 TCK was modi�ied to verify the interfaces contained in the
Reactive Streams API.

Wait, what? You might exclaim.

Then how can it be used verify the interfaces contained in the JDK
java.util.concurrent.Flow class?

Patience young padawan, all will be explained at the right time.

TCK contains four classes that have to be implemented to provide their
Flow.Publisher<T>, Flow.Subscriber<T>, and Flow.Processor<T,R>
implementations for the test harness to validate. The four classes are:

org.reactivestreams.tck.PublisherVerification<T> used to test
Publisher<T> implementations
org.reactivestreams.tck.SubscriberWhiteboxVerification<T>

used for whitebox testing Subscriber<T> implementations and
Subscription instances
org.reactivestreams.tck.SubscriberBlackboxVerification<T>

used for blackbox testing Subscriber<T> implementations and
Subscription instances
org.reactivestreams.tck.IdentityProcessorVerification<T>

used to test Processor<T,R> implementations

To make the purpose of each test obvious, the library test methods names follow
this pattern: TYPE_spec#_DESC where TYPE is one of required, optional,
stochastic, or untested, which refers to the importance of the rule being
tested. The hash signs in spec</emphasis></emphasis># represent the rule
number with the �irst one being 1 for Publisher<T> instances and 2 for
Subscriber<T> instances. The DESC is a short explanation of the test purpose.

Let’s see how we could test the IntPublisher that we de�ined previously. The
PublisherVerification<T> class requires implementation of two test
methods: one to test a working Publisher<T> (the createPublisher(..)
method) instance that emits a number of elements, and one to test a "failed"
Publisher<T> (the createFailedPublisher(..))instance, which was
unable to initialize a connection it needs to emit elements.

The instance tested by the createPublisher(..) is created by passing an
argument with a value different from 0(ZERO), so the IntPublisher instance
emits a limits set of elements, and the test execution is �inite as well.

The PublisherVerification<Integer> implementation is depicted in
Listing 12-14.

package com.apress.bgn.twelve.jdkstreams;

import org.reactivestreams.FlowAdapters;

import org.reactivestreams.Publisher;

import org.reactivestreams.tck.PublisherVerification;

import org.reactivestreams.tck.TestEnvironment;

import java.util.concurrent.Flow;

// other import statements omitted

public class IntPublisherTest extends

PublisherVerification<Integer> {

 private static final Logger log =

LoggerFactory.getLogger(IntPublisherTest.class);

 public IntPublisherTest() {

 super(new TestEnvironment(300));

 }

 @Override

 public Publisher<Integer> createPublisher(final long

elements) {

 return FlowAdapters.toPublisher(new

IntPublisher(30) {

 @Override

 public void subscribe(Flow.Subscriber<? super

Integer> subscriber) {

 intStream.forEach(subscriber::onNext);

 subscriber.onComplete();

 }

 });

 }

 @Override

 public Publisher<Integer> createFailedPublisher() {

 return FlowAdapters.toPublisher(new IntPublisher(0)

{

 @Override

 public void subscribe(Flow.Subscriber<? super

Integer> subscriber) {

 subscriber.onError(new

RuntimeException("There be dragons! (this is a failed

publisher)"));

 }

 });

 }

}

Listing 12-14 TestNG Test Class for Testing a IntPublisher Instance

Another thing that that should be mentioned about the previous test class is that
since the implementation is designed to work with the Reactive Streams API, it
cannot be used to test the JDK based IntPublisher. However, it was mentioned
previously that in version 1.0.3 the Reactive Stream API was enriched with a set of
classes used as bridges between the Reactive Stream and the JDK Reactive Stream
API. Thus, IntPublisher must be provided as an argument to the
FlowAdapters.toPublisher(..) method that converts it to an equivalent
org.reactivestreams.Publisher that the IntPublisherTest can test.

A Publisher<T> implementation might not pass all the tests, because of
design decisions that are speci�ic to the application you are building. In our case the
IntPublisher implementation is quite simplistic and when running the
createPublisher(..) method, of all the executed tests, not many of them pass
and most are ignored, as depicted in Figure 12-5.

Figure 12-5 TestNG reactive publisher

The reason tests do not pass or are ignored is that our implementation does not
implement behaviors targeted by those speci�ic tests (e.g.,
maySupportMultiSubscribe,
maySignalLessThanRequestedAndTerminateSubscription,
mustSignalOnMethodsSequentially).

We can test the processor and subscriber we de�ined in the previous section by
extending the previously mentioned testing classes as well, but we’ll leave that as an
exercise to you, because there is one more interesting thing we would like to cover
in this chapter.

Using Project Reactor
As mentioned previously, the JDK support for reactive programming is quite scarce.
Publishers, processors, and subscribers should function asynchronously, and all
that behavior must be implemented by the developer which can be a bit of a pain.
The only thing that the JDK is suitable for at the moment is providing a common
interface between all the other already existing implementations. There are a lot of
them, providing many more useful classes for more specialized reactive
components and utility methods to create and connect them easier. The one I
personally fancy the most as a Spring a�icionado is Project Reactor, the same one
favored by the Spring development team.

Project Reactor is one of the �irst libraries for reactive programming and its
classes provide a nonblocking stable foundation with ef�icient demand management
for building reactive applications. It works with Java 8 but does provide adapter
classes for JDK9+ reactive streams classes.

Project reactor is suitable for microservices applications and provides a lot
more classes designed to make programming reactive application practical than the
JDK does. Project reactor provides two main publisher implementations:
reactor.core.publisher.Mono<T>, which is a reactive stream publisher
limited to publishing zero or one element, and
reactor.core.publisher.Flux<T>, which is a reactive stream publisher
with basic �low operators.

The advantage of using Project React is that we have a lot more classes and
methods to work with, there are static factories that can be used to create
publishers, and operations can be chained way more easily.

The Project Reactor team did not like the name Processor, though, so the
intermediary components are named operators.

If you look in the of�icial documentation you will most likely encounter the
schema in Figure 12-6.4

Figure 12-6 Project Reactor Flux Publisher implementation

This is an abstract schema of how the Flux<T> publisher works. The Flux<T>
emits elements, can throw exceptions, and completed when there are no more
elements to publish, the same behavior it was explained previously, the Project
Reactor team just found a prettier way to draw it.

The drawing for the Mono implementation is quite similar (see
http://projectreactor.io/docs/core/release/api/reactor/core

/publisher/Mono.html).
But let’s put that aside and look at a few code samples. Creating Flux<T>

instances is very easy using the multiple utility methods in this class. Before
starting to publish elements, let’s design a general subscriber that does nothing else
than print values, because we will need it to make sure our Flux<T> publishers
work.

To write a subscriber using Project Reactor API, you have multiple options. You
can implement the org.reactivestreams.Subscriber<T> directly, as
shown in Listing 12-15.

package com.apress.bgn.twelve.reactor;

import org.reactivestreams.Subscriber;

import org.reactivestreams.Subscription;

// other import statements omitted

public class GenericSubscriber<T> implements Subscriber<T>

{

 private static final Logger log =

LoggerFactory.getLogger(GenericSubscriber.class);

 private Subscription subscription;

http://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html

 @Override

 public void onSubscribe(Subscription subscription) {

 if (this.subscription == null) {

 this.subscription = subscription;

 this.subscription.request(1);

 } else {

 subscription.cancel();

 }

 }

 @Override

 public void onNext(T element) {

 log.info("consumed {} ", element);

 subscription.request(1);

 }

 @Override

 public void onError(Throwable t) {

 log.error("Unexpected issue!", t);

 }

 @Override

 public void onComplete() {

 log.info("All done!");

 }

}

Listing 12-15 org.reactivestreams.Subscriber<T> Implementation

To avoid implementing that many methods with boilerplate code, there is also
the option of implementing reactor.core.CoreSubscriber<T>, the reactor
base interface for subscribers, or even better, by extending
reactor.core.publisher.BaseSubscriber<T> class, which provides basic
subscriber functionality. The behavior of subscriber typical methods can be
modi�ied by overriding methods with then same name but pre�ixed with hook. In
Listing 12-16, you can see how easy it is to write a subscriber using project reactor.

package com.apress.bgn.twelve.reactor;

import reactor.core.publisher.BaseSubscriber;

// other import statements omitted

public class GenericSubscriber<T> extends BaseSubscriber<T>

{

 private static final Logger log =

LoggerFactory.getLogger(GenericSubscriber.class);

 @Override

 protected void hookOnNext(T value) {

 log.info("consumed {} ", value);

 super.hookOnNext(value);

 }

 @Override

 protected void hookOnComplete() {

 log.info("call done.");

 super.hookOnComplete();

 }

}

Listing 12-16 reactor.core.publisher.BaseSubscriber<T> Extension

Ta da! Now we have a subscriber class, so let’s create a reactive publisher that
serves integers from an in�inite integer stream , to use an instance of this class. The
implementation is shown in Listing 12-17.

package com.apress.bgn.twelve.reactor;

import reactor.core.publisher.Flux;

import java.util.Random;

import java.util.stream.Stream;

public class ReactorDemo {

 private static final Random random = new Random();

 public static void main(String... args) {

 Flux<Integer> intFlux = Flux.fromStream(

 Stream.generate(() -> random.nextInt(150))

);

 intFlux.subscribe(new GenericSubscriber<>());

 }

}

Listing 12-17 Creating a Reactive Publisher Using Project Reactor’s Flux<T>

If you run the preceding code, you will see that all the generated integer values
are printed by the subscriber. A Flux<T> can be created from a multitude of
sources, including arrays and other publishers. For special situations, to avoid
returning a null value, an empty Flux<T> can be created by calling the empty()
method.

String[] names = {"Joy", "John", "Anemona", "Takeshi"};

Flux.fromArray(names).subscribe(new GenericSubscriber<>());

Flux<Integer> intFlux = Flux.empty();

intFlux.subscribe(new GenericSubscriber<>());

The most awesome method in my opinion is named just(..), and it is
provided for both Flux and Mono. It takes one or more values and returns a
publisher , a Flux<T> or a Mono<T>, depending on the type being called on.

Flux<String> dummyStr = Flux.just("one", "two", "three");

Flux<Integer> dummyInt = Flux.just(1,2,3);

Mono<Integer> one = Mono.just(1);

Mono<String> empty = Mono.empty();

Another method that you might �ind useful is concat(..), which allows you to
concatenate two Flux<T> instances.

String[] names = {"Joy", "John", "Anemona", "Takeshi"};

Flux<String> namesFlux = Flux.fromArray(names);

String[] names2 = {"Hanna", "Eugen", "Anthony", "David"};

Flux<String> names2Flux = Flux.fromArray(names2);

Flux<String> combined = Flux.concat(namesFlux, names2Flux);

combined.subscribe(new GenericSubscriber<>());

Another thing that you might like: remember how the IntPublisher class
had to be slowed down using a Thread.sleep(1000) call? With Flux<T> you
do not need to do that, because there are two utility methods that combined lead to
the same behavior.

Flux<Integer> infiniteFlux = Flux.fromStream(

 Stream.generate(() -> random.nextInt(150))

);

Flux<Long> delay = Flux.interval(Duration.ofSeconds(1));

Flux<Integer> delayedInfiniteFlux =

infiniteFlux.zipWith(delay, (s,l) -> s);

delayedInfiniteFlux.subscribe(new GenericSubscriber<>());

The interval(..) method creates a publisher that emits long values starting
with 0 and incrementing at speci�ied time intervals on the global timer; it receives
as an argument of type Duration, in the previous example seconds were used. The
zipWith(..) method zips the Flux<T> instance received as a parameter. The

zip operation is a speci�ic stream operation that translates as both publishers
emitting one element and combining these elements using a
java.util.function.BiFunction<T, U, R>. In our case the function just
discards the second element and returns the elements of the calling stream slowed
down by the generated seconds of the second stream.

The good part about the components provided by project reactor is that they
return mostly the same type of objects they are being called on, and this means they
can be easily chained.

A reactive piece of code equivalent to the previously implemented JDK based
implementation can be written with reactor API, as shown in Listing 12-18.

Flux<Integer> infiniteFlux = Flux.fromStream(

 Stream.generate(() -> random.nextInt(150))

);

Flux<Long> delay = Flux.interval(Duration.ofSeconds(1));

Flux<Integer> delayedInfiniteFlux =

infiniteFlux.zipWith(delay, (s, l) -> s);

delayedInfiniteFlux

 .filter(element -> (element >= 0 && element < 127))

 .map(item -> {

 if (item % 2 == 0 && item >= 98 && item <= 122) {

 item -= 32;

 }

 return item;

 })

.map(element -> (char) element.intValue())

.subscribe(new GenericSubscriber<>());

Listing 12-18 Writing a Reactive Pipeline Using Project Reactor

Most functions that you remember from the Stream API have been implemented
for a reactive usage in project Reactor, so if the previous code seems familiar, this is
the reason why.

Regarding Project Reactor API, if you are ever in need of a reactive library, you
could consider this one �irst. You can �ind the of�icial documentation at
http://projectreactor.io/docs/core/milestone/reference/, and
it is quite good and full of examples. If Oracle ever decides to provide their own rich
API for programming reactive applications using reactive streams, they will
probably be a little bit too late to the table anyway.

Summary

http://projectreactor.io/docs/core/milestone/reference/

1

2

3

4

Reactive programming is not an easy topic, but it does seem to be the future of
programming. This book would need to get into really advanced topics to show the
true power of a reactive solution. Being a book for absolute beginners in Java, this is
not a suitable subject for it. However, after reading this book, if you are interested in
learning more about building reactive applications, the Pro Spring MVC with
WebFlux5 book, published by Apress in January 2021, has a few great chapters
about building reactive applications with Spring and Project Reactor.

What you must keep in mind is that reactive implementations are quite useless
with implementations that are not reactive. There is no use in designing and using
reactive components with nonreactive components, because you might actually
introduce failure points and slow things down. For example, if you are using an
Oracle database, there is no point in de�ining a repository class that returns
elements using reactive streams, because an Oracle database does not support
reactive access. You would just be adding a reactive layer that adds extra
implementation, because there are no real bene�its in this case. But if your database
of choice is MongoDB, you can use reactive programming con�idently, because
MongoDB databases support reactive access. Also, if you are building a web
application with a ReactJS or angular interface, you can design your controller
classes to provide data reactively to be displayed by the interface.

The contents of this chapter can be summarized as follows:

reactive programming was explained
the behavior of reactive streams was explained
the JDK reactive streams support was covered
how to use the Reactive Streams Technology Compatibility Kit to test your
reactive solution was addressed
a small introduction to Project Reactor components for building reactive
applications was provided

Footnotes
If you are interested more in communication models, you can search the web for Enterprise Integration

Patterns.

Read it at Reactive Man, “The Reactive Manifesto,” https://www.reactivemanifesto.org, accessed

October 15, 2021.

See the of�icial GitHub Repo at Github, “Reactive-Streams,” https://github.com/reactive-

streams/reactive-streams-jvm/tree/master/tck, accessed October 15, 2021.

Image source: Project Reactor, “Public API JavaDoc,”

http://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html,

https://www.reactivemanifesto.org/
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck
http://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

5

accessed October 15, 2021.

Marten Deinum and Iuliana Cosmina, Pro Spring MVC with WebFlux (New York: Apress, 2021),

https://www.apress.com/us/book/9781484256657, accessed October 15, 2021.

https://www.apress.com/us/book/9781484256657

(1)

© Iuliana Cosmina 2022
I. Cosmina, Java 17 for Absolute Beginners
https://doi.org/10.1007/978-1-4842-7080-6_13

13. Garbage Collection

Iuliana Cosmina1

Edinburgh, UK

When executing Java code, objects are created, used, and discarded repeatedly from memory. The process
through which unused Java objects are discarded is called memory management , but is most commonly
known as garbage collection (GC) . Garbage collection was mentioned in Chapter 5, as it was needed for
explaining the difference between primitive and reference types, but in this chapter we will go deep under
the hood of the JVM to resolve yet another mystery of a running Java application.

When the Java garbage collector does its job properly, the memory is cleaned up before new objects are
created and it does not �ill up, so you could say that the memory allocated to a program is recycled .
Programs of low complexity, like the ones we’ve been writing so far, do not require that much memory to
function, but depending on their design (remember recursivity?) they could end up using more memory
than available. In Java, the garbage collector runs automatically. In more low-level languages like C/C++
there is no automatic memory management and the developer is responsible for writing the code to allocate
memory as needed, and deallocate it when it is no longer needed. Although it seems practical to have
automatic memory management, the garbage collector can be a problem if managed incorrectly. This
chapter provides enough information about the garbage collector to ensure that it is used wisely and that
when problems arise, at least you will have a good place to start �ixing them.

Although some ways to tune the garbage collector will be introduced, just keep in mind that garbage
collection tuning should not be necessary; a program should be written in such a way that it creates only the
objects needed to perform its function, references are managed correctly, estimations of memory capacity
for the server to run the application should be done before the application is put into production, and the
maximum amount of memory needed by it should be known and con�igured before that. If the memory
allocated to a Java program is not enough, there is usually something rotten in the implementation.

Garbage Collection Basics
The Java automatic garbage collection is one of the major features of the of the Java Programming language.
The JVM is a virtual machine used to execute Java programs, as mentioned at the beginning of this book. A
Java program uses resources of the system the JVM is running on top of, so it must have a way to release
those resources safely. This job is done by the garbage collector.

To understand what the place of the garbage collector is we must take a look at the JVM architecture.

Oracle Hotspot JVM Architecture
Over the years some big companies have produced their own variations of the JVM (e.g., IBM) and now that
Java is moving into the module age and the rapid delivery style, more and more companies will appear that
maintain a speci�ic version of the JDK/JVM (e.g., Azul, Amazon Coretto, GraalVM) because migration to 9+ is
dif�icult for big applications with legacy dependencies.

Another important economic factor here is that Java Support is paid as of January 2019, for all LTS
versions after the two years grace period, so companies will eventually have to pay for the JDK running their
Java based software. The of�icial Oracle JDK can be used on personal computers by developers learning to
code, or building small projects, but running their software on a server, accessing enterprise features such as
full-�ledged JMC, and turning that software pro�itable requires a paid subscription.

Currently, the Oracle’s HotSpot is still the most common JVM being used by many applications. When it
comes to garbage collection, this JVM provides a mature set of garbage collection options. An abstract
representation of its architecture is depicted in Figure 13-1.

https://doi.org/10.1007/978-1-4842-7080-6_13

Figure 13-1 Oracle HotSpot JVM architecture (abstract representation)

The heap memory area is managed by the garbage collector and is split into multiple zones. Objects are
moved between these zones until being discarded. The zones depicted in Figure 13-2 are for old-styles
garbage collectors, and the new style of garbage collector, which will probably follow the model of the
current default garbage collector used by the JDK, the G1GC, that was introduced in JDK 8.

Figure 13-2 The heap structure

The G1GC is a next-generation garbage collector designed for machines with a lot of resources, which is
why its approach to the partitioning of the heap is different. Its heap is partitioned into a set of equal-sized
heap regions, each a contiguous range of virtual memory. Certain region sets are assigned the same roles
(eden, survivor, old) as in the older collectors, but there is not a �ixed size for them. This provides greater
�lexibility in memory usage. You can read more about the different types of garbage collectors in the next
section, for now the focus will remain on the heap memory and its zones that are named generations .

When an application is running, objects created by it are stored in the young generation area . When an
object is created it starts its life in a subdivision of this generation named the eden space . When the eden
space is �illed, this triggers a minor garbage collection (minor GC run) that cleans up this area of
unreferenced objects, and moves referenced objects to the �irst survivor space (S0) . The next time the
eden space is �illed another minor GC run is triggered, which again deletes unreferenced objects, and
referenced objects are moved to the next survivor space (S1) .

The objects in S0 have been there for a minor GC run, so their age is incremented. They are moved to S1
as well, so S0 and the eden can be cleaned up.

At the next minor GC run, the operation is performed again, but this time referenced objects are saved
into the empty S0. The older objects from S1 have their age incremented and moved to S0 as well, so the S1
and eden can be cleaned up.

After the objects in survivor space reach a certain age (value speci�ic to each type garbage collector),
they are moved to the old generation space during minor GC runs.

The previously described steps are depicted in image 13-3, and the objects o1 and o2 are aged until they
are moved to the old generation area.

Figure 13-3 Minor GC runs on the young generation space

Minor GC collections will happen until the old generation space is �illed. That is when a major garbage
collection (major GC run) is triggered, which will delete unreferenced objects and will compact the
memory, moving objects around, so that the empty memory left is one big compact space.

The minor garbage collection event is a stop-the-world event. This process basically takes over the run of
the application and pauses its execution, so it can free the memory. As the young generation space is quite
small in size (as you will see this in the next section), the application pause is usually negligible. If no
memory can be reclaimed from the young generation area after a minor GC run takes place, a major GC run
is triggered.

The permanent generation area is reserved for JVM metadata such as classes and methods. This area is
cleaned too from time to time to remove classes that are no longer used in the application. The cleanup of
this area is triggered when there are no more objects in the heap.

The garbage collection process just described is speci�ic to generational garbage collectors, such as the
G1GC. Before JDK 8, garbage collection was done using an older garbage collector that uses an algorithm
called Concurrent Mark Sweep . This type of garbage collector runs in parallel with the application
marking used and unused zones of memory. Then it would delete unreferenced object and would compact
the memory into a contiguous zone, by moving objects around. This process was quite inef�icient and time-
consuming. As more and more objects were created, the garbage collection took more and more time to be
performed, but as most objects are quite short-lived this was not really a problem. So the CMS garbage
collector was okay for a while.

The G1GC has a similar approach, but after the mark phase is �inished, G1 focuses on regions that are
mostly empty to recover as much unused memory as possible. That is why this garbage collector is also
named garbage-�irst . G1 also uses a pause prediction model to decide how many memory regions can be
processed based on the pause time set for the application. Objects from the processed region are copied to a
single region of the heap, thus realizing a memory compaction at the same time. Also, G1GC does not have a
�ixed size the eden and survivor spaces, it decides their size after every minor GC run.

How Many Garbage Collectors Are There?
The garbage collectors the Oracle HotSpot JVM provides the following types of garbage collectors:

the serial collector : all garbage collection events are conducted serially in one thread. Memory
compaction happens after each garbage collection.
the parallel collector : multiple threads are used for minor garbage collection. A single thread is used for
a major garbage collection and Old Generation compaction.
CMS (Concurrent Mark Sweep): multiple threads are used for minor garbage collection using the same
algorithm as the parallel GC. Major garbage collection is multithreaded as well, but CMS runs concurrently
alongside application processes to minimize stop the world events. No memory compaction is done. This
type of garbage collector is suitable for or applications requiring shorter garbage collection pauses and
that can afford to share processor resources with the garbage collector while the application is running.
This was the default garbage collector until Java 8, when G1 was introduced as default.
G1 (Garbage First): introduced in Oracle JDK 7, update 4 was designed to permanently replace the CMS
GC and is suitable for applications that can operate concurrently with CMS collector, that need memory
compaction, that need more predictable GC pause durations and do not require a much larger heap. The
Garbage-First (G1) collector is a server-style garbage collector, targeted for multiprocessor machines with
large memories, but considering that most laptops now have at least 8 cores and 16GB RAM it is quite
suitable for them as well. G1 has both concurrent (runs along with application threads, e.g., re�inement,
marking, cleanup) and parallel (multithreaded, e.g., stop-the-world) phases. Full garbage collections are
still single threaded, but if tuned properly your applications should avoid full garbage collections.
Z Garbage Collector: the Z Garbage Collector (ZGC) is a scalable low latency garbage collector introduced
in Java 11. ZGC performs all expensive work concurrently, without stopping the execution of application
threads for more than 10ms, which makes is suitable for applications which require low latency and/or
use a very large heap (multiterabytes)
Shenandoah Garbage Collector : Shenandoah is the low pause time garbage collector, introduced in Java
12, that reduces GC pause times by performing more garbage collection work concurrently with the
running Java program. Shenandoah does the bulk of GC work concurrently, including the concurrent
compaction, which means its pause times are no longer directly proportional to the size of the heap.
Epsilon no-op collector : introduced in Java 11, this type of collector is actually a dummy GC, that does
not recycle or clean up the memory. When the heap is full, the JVM just shuts down. This type of collector
can be used for performance tests, for memory allocation analysis, VM interface testing, and extremely
short-lived jobs and applications that are super-limited when it comes to memory usage and developers
must estimate the application memory footprint as exactly as possible.

 The Concurrent Mark Sweep Garbage Collector has been removed from the JDK, and the -
XX:+UseConcMarkSweepGC VM option is no longer recognized.

We’ve listed the garbage collector types, but how do we know which is the one used by our local JVM?
There is more than one way. The most simple way is to add the -verbose:gc as a VM option when running
a simple class with a main(..) method.

Using Java 17 JDK without any other con�iguration, the following output is shown:

[0.011s][info][gc] Using G1

It becomes clear that by default, the G1 garbage collector is used. To show even more details of this
garbage collector the -Xlog:gc*1 can be added to the VM arguments when running a Java class. For the
simple class com.apress.bgn.thirteen.ShowGCDemo that contains only a System.out.println

statement, the output shown in Listing 13-1 is printed in the console when the class is executed with the two
VM options mentioned previously.

[0.010s][info][gc] Using G1

[0.012s][info][gc,init] Version: 17+35-2724 (release)

[0.012s][info][gc,init] CPUs: 8 total, 8 available

[0.012s][info][gc,init] Memory: 16384M

[0.012s][info][gc,init] Large Page Support: Disabled

[0.012s][info][gc,init] NUMA Support: Disabled

[0.012s][info][gc,init] Compressed Oops: Enabled (Zero based)

[0.012s][info][gc,init] Heap Region Size: 2M

[0.012s][info][gc,init] Heap Min Capacity: 8M

[0.012s][info][gc,init] Heap Initial Capacity: 256M

[0.012s][info][gc,init] Heap Max Capacity: 4G

[0.012s][info][gc,init] Pre-touch: Disabled

[0.012s][info][gc,init] Parallel Workers: 8

[0.012s][info][gc,init] Concurrent Workers: 2

[0.012s][info][gc,init] Concurrent Refinement Workers: 8

[0.012s][info][gc,init] Periodic GC: Disabled

[0.012s][info][gc,metaspace] CDS archive(s) mapped at: [0x0000000800000000-

0x0000000800bd0000-0x0000000800bd0000), size 12386304, SharedBaseAddress:

0x0000000800000000, ArchiveRelocationMode: 0.

[0.012s][info][gc,metaspace] Compressed class space mapped at:

0x0000000800c00000-0x0000000840c00000, reserved size: 1073741824

[0.012s][info][gc,metaspace] Narrow klass base: 0x0000000800000000, Narrow

klass shift: 0, Narrow klass range: 0x100000000

Hey ma' look the GC!

[0.123s][info][gc,heap,exit] Heap

[0.123s][info][gc,heap,exit] garbage-first heap total 266240K, used 6098K

[0x0000000700000000, 0x0000000800000000)

[0.123s][info][gc,heap,exit] region size 2048K, 3 young (6144K), 0

survivors (0K)

[0.123s][info][gc,heap,exit] Metaspace used 397K, committed 576K,

reserved 1056768K

[0.123s][info][gc,heap,exit] class space used 20K, committed 128K,

reserved 1048576K

Listing 13-1 Showing G1GC details Using -verbose:gc -Xlog:gc* as VM Arguments When Running ShowGCDemo

We can see the heap maximum size (4G), the memory region size (2M), and size and occupation for each
generation.

In Chapter 5, the java -XX:+PrintFlagsFinal -version command was introduced to show all
JVM �lags. Filtering the results returned by the “GC” and “NewSize” shows all the GC speci�ic �lags and their
values. There are quite a few of them, and they are shown in Listing 13-2.

$ java -XX:+PrintFlagsFinal -version | grep 'GC\|NewSize'

 uintx AdaptiveSizeMajorGCDecayTimeScale = 10 {product} {defaul

 uint ConcGCThreads = 2 {product} {ergono

 bool DisableExplicitGC = false {product} {defaul

 bool ExplicitGCInvokesConcurrent = false {product} {defaul

 uintx G1MixedGCCountTarget = 8 {product} {defaul

 uintx G1PeriodicGCInterval = 0 {manageable} {def

 bool G1PeriodicGCInvokesConcurrent = true {product} {defaul

 double G1PeriodicGCSystemLoadThreshold = 0.000000 {manageable} {def

 uintx GCDrainStackTargetSize = 64 {product} {ergono

 uintx GCHeapFreeLimit = 2 {product} {defaul

 uintx GCLockerEdenExpansionPercent = 5 {product} {defaul

 uintx GCPauseIntervalMillis = 201 {product} {defaul

 uintx GCTimeLimit = 98 {product} {defaul

 uintx GCTimeRatio = 12 {product} {defaul

 bool HeapDumpAfterFullGC = false {manageable} {def

 bool HeapDumpBeforeFullGC = false {manageable} {def

 size_t HeapSizePerGCThread = 43620760 {product} {defaul

 uintx MaxGCMinorPauseMillis = 18446744.. {product} {defaul

 uintx MaxGCPauseMillis = 200 {product} {defaul

 size_t MaxNewSize = 2575302656 {product} {ergono

 size_t NewSize = 1363144 {product} {defaul

 size_t NewSizeThreadIncrease = 5320 {pd product} {def

 int ParGCArrayScanChunk = 50 {product} {defaul

 uintx ParallelGCBufferWastePct = 10 {product} {defaul

 uint ParallelGCThreads = 8 {product} {defaul

 bool PrintGC = false {product} {defaul

 bool PrintGCDetails = false {product} {defaul

 bool ScavengeBeforeFullGC = false {product} {defaul

 bool UseAdaptiveSizeDecayMajorGCCost = true {product} {defaul

 bool UseAdaptiveSizePolicyWithSystemGC = false {product} {defaul

 bool UseDynamicNumberOfGCThreads = true {product} {defaul

 bool UseG1GC =

true {product}

 bool UseGCOverheadLimit = true {product} {defaul

 bool UseMaximumCompactionOnSystemGC = true {product} {defaul

 bool UseParallelGC = false {product} {defaul

 bool UseSerialGC = false {product} {defaul

 bool UseShenandoahGC = false {product} {defaul

 bool UseZGC = false {product} {defaul

Listing 13-2 Showing G1GC Flags Using java -XX:+PrintFlagsFinal -version | grep 'GC\|NewSize'

The UseG1GC is set to true by default, which means when the JVM is used to execute a Java application,
the G1 garbage collector is used. The NewSize �ilter picks up �lags with values relevant for the Young
Generation size. All these �lags can be used as VM options preceedded by -XX:+ when running an
application to customize the GC behavior or show extra details in the logs. For example, we can instruct the
JVM to use any of the garbage collectors listed previously by using their speci�ic VM options:

-XX:+UseSerialGC to use the serial GC, in this case adding -verbose:gc -Xlog:gc* as VM option
as well produces the output in Listing 13-3 (notice the lack of parallel, concurrent workers and the
different heap structure).

[0.013s][info][gc] Using Serial

[0.013s][info][gc,init] Version: 17+35-2724 (release)

[0.013s][info][gc,init] CPUs: 8 total, 8 available

[0.013s][info][gc,init] Memory: 16384M

[0.013s][info][gc,init] Large Page Support: Disabled

[0.013s][info][gc,init] NUMA Support: Disabled

[0.013s][info][gc,init] Compressed Oops: Enabled (Zero based)

[0.013s][info][gc,init] Heap Min Capacity: 8M

[0.013s][info][gc,init] Heap Initial Capacity: 256M

[0.013s][info][gc,init] Heap Max Capacity: 4G

[0.013s][info][gc,init] Pre-touch: Disabled

[0.014s][info][gc,metaspace] CDS archive(s) mapped at: [0x0000000800000000-

0x0000000800bd0000-0x0000000800bd0000), size 12386304, SharedBaseAddress:

0x0000000800000000, ArchiveRelocationMode: 0.

[0.014s][info][gc,metaspace] Compressed class space mapped at:

0x0000000800c00000-0x0000000840c00000, reserved size: 1073741824

[0.014s][info][gc,metaspace] Narrow klass base: 0x0000000800000000, Narrow

klass shift: 0, Narrow klass range: 0x100000000

Hey ma' look the GC!

[0.180s][info][gc,heap,exit] Heap

[0.180s][info][gc,heap,exit] def new generation total 78656K, used 9946K

[0x0000000700000000, 0x0000000705550000, 0x0000000755550000)

[0.180s][info][gc,heap,exit] eden space 69952K, 14% used

[0x0000000700000000, 0x00000007009b6a70, 0x0000000704450000)

[0.180s][info][gc,heap,exit] from space 8704K, 0% used

[0x0000000704450000, 0x0000000704450000, 0x0000000704cd0000)

[0.180s][info][gc,heap,exit] to space 8704K, 0% used

[0x0000000704cd0000, 0x0000000704cd0000, 0x0000000705550000)

[0.180s][info][gc,heap,exit] tenured generation total 174784K, used 0K

[0x0000000755550000, 0x0000000760000000, 0x0000000800000000)

[0.180s][info][gc,heap,exit] the space 174784K, 0% used

[0x0000000755550000, 0x0000000755550000, 0x0000000755550200,

0x0000000760000000)

[0.180s][info][gc,heap,exit] Metaspace used 774K, committed 960K,

reserved 1056768K

[0.180s][info][gc,heap,exit] class space used 67K, committed 192K,

reserved 1048576K

Listing 13-3 Showing Serial GC Details

-XX:+UseParallelGC to use the parallel GC, in this case adding -verbose:gc -Xlog:gc* as VM
option as well produces the output in Listing 13-4 (notice the parallel workers and the different heap
structure).

[0.016s][info][gc] Using Parallel

[0.018s][info][gc,init] Version: 17+35-2724 (release)

[0.018s][info][gc,init] CPUs: 8 total, 8 available

[0.018s][info][gc,init] Memory: 16384M

[0.018s][info][gc,init] Large Page Support: Disabled

[0.018s][info][gc,init] NUMA Support: Disabled

[0.018s][info][gc,init] Compressed Oops: Enabled (Zero based)

[0.018s][info][gc,init] Alignments: Space 512K, Generation 512K, Heap 2M

[0.018s][info][gc,init] Heap Min Capacity: 8M

[0.018s][info][gc,init] Heap Initial Capacity: 256M

[0.018s][info][gc,init] Heap Max Capacity: 4G

[0.018s][info][gc,init] Pre-touch: Disabled

[0.018s][info][gc,init] Parallel Workers: 8

[0.018s][info][gc,metaspace] CDS archive(s) mapped at: [0x0000000800000000-

0x0000000800bd0000-0x0000000800bd0000), size 12386304, SharedBaseAddress:

0x0000000800000000, ArchiveRelocationMode: 0.

[0.018s][info][gc,metaspace] Compressed class space mapped at:

0x0000000800c00000-0x0000000840c00000, reserved size: 1073741824

[0.018s][info][gc,metaspace] Narrow klass base: 0x0000000800000000, Narrow

klass shift: 0, Narrow klass range: 0x100000000

Hey ma' look the GC!

[0.187s][info][gc,heap,exit] Heap

[0.187s][info][gc,heap,exit] PSYoungGen total 76288K, used 9337K

[0x00000007aab00000, 0x00000007b0000000, 0x0000000800000000)

[0.187s][info][gc,heap,exit] eden space 65536K, 14% used

[0x00000007aab00000,0x00000007ab41e680,0x00000007aeb00000)

[0.187s][info][gc,heap,exit] from space 10752K, 0% used

[0x00000007af580000,0x00000007af580000,0x00000007b0000000)

[0.187s][info][gc,heap,exit] to space 10752K, 0% used

[0x00000007aeb00000,0x00000007aeb00000,0x00000007af580000)

[0.187s][info][gc,heap,exit] ParOldGen total 175104K, used 0K

[0x0000000700000000, 0x000000070ab00000, 0x00000007aab00000)

[0.187s][info][gc,heap,exit] object space 175104K, 0% used

[0x0000000700000000,0x0000000700000000,0x000000070ab00000)

[0.187s][info][gc,heap,exit] Metaspace used 746K, committed 896K,

reserved 1056768K

[0.187s][info][gc,heap,exit] class space used 65K, committed 128K,

reserved 1048576K

Listing 13-4 Showing Parallel GC Details

-XX:+UseG1GC, the default garbage collector, already covered this one.
-XX:+UseShenandoahGC to use the Shenandoah GC. Although the �lag exists, Oracle has chosen not to
build Shenandoah, it is however available in various OpenJDK builds listed on the Shenandoah of�icial
documentation: https://wiki.openjdk.java.net/display/shenandoah/Main#Main-
JDKSupport.
-XX:+UseZGC to use the ZGC, in this case adding -verbose:gc -Xlog:gc* as VM option as well
produces the output in Listing 13-5 (notice the GC and Runtime workers and the different heap structure).

[0.031s][info][gc,init] Initializing The Z Garbage Collector

[0.031s][info][gc,init] Version: 17+35-2724 (release)

[0.031s][info][gc,init] NUMA Support: Disabled

[0.031s][info][gc,init] CPUs: 8 total, 8 available

[0.031s][info][gc,init] Memory: 16384M

[0.031s][info][gc,init] Large Page Support: Disabled

[0.031s][info][gc,init] GC Workers: 2 (dynamic)

[0.031s][info][gc,init] Address Space Type: Contiguous/Unrestricted/Complete

[0.031s][info][gc,init] Address Space Size: 65536M x 3 = 196608M

[0.032s][info][gc,init] Min Capacity: 8M

[0.032s][info][gc,init] Initial Capacity: 256M

[0.032s][info][gc,init] Max Capacity: 4096M

[0.032s][info][gc,init] Medium Page Size: 32M

[0.032s][info][gc,init] Pre-touch: Disabled

[0.032s][info][gc,init] Uncommit: Enabled

[0.032s][info][gc,init] Uncommit Delay: 300s

[0.032s][info][gc,init] Runtime Workers: 5

[0.032s][info][gc] Using The Z Garbage Collector

[0.033s][info][gc,metaspace] CDS archive(s) mapped at: [0x0000000800000000-

0x0000000800ba4000-0x0000000800ba4000), size 12206080, SharedBaseAddress:

0x0000000800000000, ArchiveRelocationMode: 0.

[0.033s][info][gc,metaspace] Compressed class space mapped at:

0x0000000800c00000-0x0000000840c00000, reserved size: 1073741824

[0.033s][info][gc,metaspace] Narrow klass base: 0x0000000800000000, Narrow

klass shift: 0, Narrow klass range: 0x100000000

Hey ma' look the GC!

[0.283s][info][gc,heap,exit] Heap

[0.283s][info][gc,heap,exit] ZHeap used 10M, capacity 256M, max

capacity 4096M

[0.283s][info][gc,heap,exit] Metaspace used 754K, committed 896K,

reserved 1056768K

[0.283s][info][gc,heap,exit] class space used 66K, committed 128K,

reserved 1048576K

Listing 13-5 Showing ZGC Details

https://wiki.openjdk.java.net/display/shenandoah/Main%2523Main-JDKSupport

-XX:+UseEpsilonGC, the no-op garbage collector. If in the console you will see a message asking you to
also add the -XX:+UnlockExperimentalVMOptions before the option to enable the Epsilon garbage
collector do so. This VM option is needed to unlock experimental features and at the time this book was
written this garbage collector is an experimental feature. Adding -verbose:gc -Xlog:gc* as VM
option as well produces the output in Listing 13-6 (notice the lack of any workers and the TLAB options).

[0.012s][info][gc] Using Epsilon

[0.012s][info][gc,init] Version: 17+35-2724 (release)

[0.012s][info][gc,init] CPUs: 8 total, 8 available

[0.012s][info][gc,init] Memory: 16384M

[0.012s][info][gc,init] Large Page Support: Disabled

[0.012s][info][gc,init] NUMA Support: Disabled

[0.012s][info][gc,init] Compressed Oops: Enabled (Zero based)

[0.012s][info][gc,init] Heap Min Capacity: 6656K

[0.012s][info][gc,init] Heap Initial Capacity: 256M

[0.012s][info][gc,init] Heap Max Capacity: 4G

[0.012s][info][gc,init] Pre-touch: Disabled

[0.012s][warning][gc,init] Consider setting -Xms equal to -Xmx to avoid

resizing hiccups

[0.012s][warning][gc,init] Consider enabling -XX:+AlwaysPreTouch to avoid

memory commit hiccups

[0.012s][info][gc,init] TLAB Size Max: 4M

[0.012s][info][gc,init] TLAB Size Elasticity: 1.10x

[0.012s][info][gc,init] TLAB Size Decay Time: 1000ms

[0.013s][info][gc,metaspace] CDS archive(s) mapped at:

[0x0000000800000000-0x0000000800bd0000-0x0000000800bd0000), size 12386304,

SharedBaseAddress: 0x0000000800000000, ArchiveRelocationMode: 0.

[0.013s][info][gc,metaspace] Compressed class space mapped at:

0x0000000800c00000-0x0000000840c00000, reserved size: 1073741824

[0.013s][info][gc,metaspace] Narrow klass base: 0x0000000800000000,

Narrow klass shift: 0, Narrow klass range: 0x100000000

Hey ma' look the GC!

[0.179s][info][gc,heap,exit] Heap

[0.179s][info][gc,heap,exit] Epsilon Heap

[0.179s][info][gc,heap,exit] Allocation space:

[0.179s][info][gc,heap,exit] space 262144K, 1% used

[0x0000000700000000, 0x00000007003364a0, 0x0000000710000000)

[0.180s][info][gc,heap,exit] Metaspace used 751K, committed 896K,

reserved 1056768K

[0.180s][info][gc,heap,exit] class space used 65K, committed 128K,

reserved 1048576K

[0.180s][info][gc] Heap: 4096M reserved, 256M (6.25%)

committed, 3289K (0.08%) used

[0.180s][info][gc,metaspace] Metaspace: 1032M reserved, 896K (0.08%)

committed, 752K (0.07%) used

Listing 13-6 Showing Epsilon GC Details

As you can see, the data printed for these garbage collectors has common elements, such as the size of
heap, which will always be 256M at the start of the application and has a maximum size of 4GB on my
system. The eden and the young generation differs between them as well, the G1 using just 4096K for the
young generation, when the CMS requires 78656K. (a lot more)

The most interesting here is the Epislon garbage collector, because as expected it does not have a heap
split into generation areas, as this type of garbage collector does not perform garbage collection at all. The
TLAB is an acronym for Thread Local Allocation Buffer , which is a memory area where objects are stored.
Only bigger objects are stored outside of TLABs. The TLABs are dynamically resized during the execution for

each thread individually. So if a thread allocates very much, the new TLABs that it gets from the heap will
increase in size. The minimum size of a TLAB can be controlled using the VM -XX:MinTLABSize option.

For the small empty class that we ran with the previous VM options this output is not really relevant, but
you can play with these options when running the code from the next sections, because that is when the
statistics printed here have some relevance.

Also, there is a VM option named -XX:+PrintCommandLineFlags that can be used when a class is
run to depict con�igurations of the garbage collector, as the number of threads it makes use of, heap size, and
so on. These options are shown in Listing 13-7.

-XX:ConcGCThreads=2

-XX:G1ConcRefinementThreads=8

-XX:GCDrainStackTargetSize=64

-XX:InitialHeapSize=268435456

-XX:MarkStackSize=4194304

-XX:MaxHeapSize=4294967296

-XX:MinHeapSize=6815736

-XX:+PrintCommandLineFlags

-XX:ReservedCodeCacheSize=251658240

-XX:+SegmentedCodeCache

-XX:+UseCompressedClassPointers

-XX:+UseCompressedOops

-XX:+UseG1GC

Listing 13-7 G1GC VM Options

Most of these VM options have obvious names that allow a developer to infer himself or herself what
they are used for; for those that do not, there is such a thing as the of�icial documentation from Oracle. If you
ever need to dissect the Oracle memory management, this article is very good for this:
https://www.oracle.com/java/technologies/javase/javase-core-technologies-

apis.html.

Working with GC from the Code
For most applications garbage collection is not something a developer must really consider. The JVM starts a
GC thread from time to time, which does its job usually without hindering the execution of the application.
For developers who want to have more than Java basic skills, understanding how the Java garbage collection
works and how can it be tuned is a must. The �irst thing a developer must accept about Java garbage
collection is that it cannot be controlled at runtime. As you will see in the next section there is a way to
suggest the JVM that some memory cleaning is necessary, but there is no guarantee that a memory cleaning
will actually be performed. The only thing that can be done from the code specifying some code to be run
when an object is discarded.

Using the finalize() Method
At the beginning of this book it was mentioned that every Java class is automatically a subclass of the JDK
java.lang.Object class. This class is at the root of the JDK hierarchy and is the root of all classes in an
application. It provides quite a few useful methods that can be extended or overwritten to implement
behavior speci�ic to the subclass. The equals(), hashcode() and toString() have already been
mentioned. The finalize() method was deprecated in Java 9, but it was not yet removed from the JDK in
the interest of backward compatibility. The �inalization mechanism is somewhat problematic. Finalization
can lead to performance issues, deadlocks, and hangs. Errors in �inalizers can lead to resource leaks, also
there is no way to cancel �inalization if it is no longer necessary.

Since some developers might end up working with Java projects using earlier versions of the JDK, it is
good to know that this method exists in case you might ever need it, or just to know where to look for weird
bugs.

This method is called by the garbage collector when there are no longer any references to that object in
the code. Before we move forward, take a look at the code in Listing 13-8.

https://www.oracle.com/java/technologies/javase/javase-core-technologies-apis.html

package com.apress.bgn.thirteen;

import com.apress.bgn.thirteen.util.NameGenerator;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import java.time.LocalDate;

import java.util.Random;

public class InfiniteSingerGenerator {

 private static final Logger log =

LoggerFactory.getLogger(InfiniteSingerGenerator.class);

 private static NameGenerator nameGenerator = new NameGenerator();

 private static final Random random = new Random();

 public static void main(String... args) {

 while (true) {

 genSinger();

 }

 }

 private static void genSinger() {

 Singer s = new Singer(nameGenerator.genName(), random.nextDouble(),

LocalDate.now());

 log.info("JVM created: {}", s.getName());

 }

}

Listing 13-8 Class Generating an In�inite Number of Singer Instances

The action performed by the previous code should be obvious even without knowing how the
NameGenerator or the Singer class look like. The main method calls the genSinger() method in an
in�inite loop. This means that an in�inite Singer instances are created. So what happens? Will the code run?
For how long? If you were able to reply to these questions in your mind, my work here is complete; you can
stop reading the book now. ☺

In Chapter 5 there were some �igures representing the memory contents for a small program. Figure 13-
4 represents how the Java heap and stack memory might look during the execution of the previous program.

Figure 13-4 Java stack and heap memory during execution of the InfiniteSingerGenerator class

Only one genSinger() call was represented and only one Singer instance, for obvious reasons. As
you can see, when the main(..) method is called, references to the static instances are created, that will be
relevant to the program until the end of its execution. Then, genSinger() methods are called. Each of
these methods has its own stack where it saves references to the objects created within the context of that
method, in this case the Singer instance. This reference is used just to print the name of the Singer
instance that was created in the body of this method. Then the method exists, without returning the
reference. This means that the instance that was created, is no longer necessary, as it was created to be used
only in the context of this method. When the execution of thegenSinger() method ends, the reference to the
Singer is discarded from the stack. The Singer instance still exists in the heap memory, but can no longer
be accessed from the program, thus it is no longer necessary to it. It now just keeps a memory block
occupied with its own contents and its references to other instances, in this case, a String, a Double and a
LocalDate.

Considering that the genString() is called an in�inite number of times (in the �igure we represented
this by the (*n), more Singer instances will be created and they will keep the memory occupied and the
program will be unable at some point to create others, because there will be no more memory available.

This is where the garbage collector comes into the picture. The Singer instances that are no longer
being referenced from the program, and thus unreachable, are considered garbage, (now you know where
the name is coming from): they are no longer necessary, and the memory can be safely cleaned up. The
garbage collector is a cleanup thread that runs in parallel with the main execution thread and from time to
time, starts deleting the unreferenced objects in the heap memory. And because the finalize() method is
still available for use, we will overwrite it for the Singer type to print a log message, so we can see in our
console directly when the garbage collector is destroying an instance, because before that will call the
finalize() method. The code snippet in Listing 13-9 depicts our Singer instance.

package com.apress.bgn.thirteen;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import java.time.LocalDate;

import java.util.Objects;

public class Singer {

 private static final Logger log = LoggerFactory.getLogger(Singer.class);

 private static final long serialVersionUID = 42L;

 private final long birthtime;

 private String name;

 private Double rating;

 private LocalDate birthDate;

 public Singer(String name, Double rating, LocalDate birthDate) {

 this.name = name;

 this.rating = rating;

 this.birthDate = birthDate;

 this.birthtime = System.nanoTime();

 }

 // some code omittted

 @Override

 protected void finalize() throws Throwable {

 try {

 long deathtime = System.nanoTime();

 long lifespan = (deathtime - birthtime) / 1_000_000_000;

 log.info("GC Destroyed: {} after {} seconds", name, lifespan);

 } finally {

 super.finalize();

 }

 }

}

Listing 13-9 The Singer Class with the Overriden finalize() Method

The �ield birthtime was added just to be able to calculate the time that passes between when the
constructor for an instance is called and the time the garbage collector calls the finalize() method. As
the time is counted in nanoseconds, we are dividing the difference by 109 to get the time in seconds.

The code sample used in this section gives the garbage collector a lot of work to do, as every Singer
instance being created is being used very little before being discarded. If you run the code you will see a lot
of log messages in the console: �irst a lot of messages about objects being created, and if you wait a little,
messages about objects being discarded will appear as well. All output is directed to a �ile, because the
IntelliJ IDEA console is based on a buffer that resets from time to time to prevent the editor from crashing.
You will have to stop the program manually, because the while(true) never ends, because its condition will
never evaluate to false. After you stopped the program you will notice a log �ile at the following location:
/chapter13/out/gc.log. If you don’t, modify the IntelliJ IDEA launcher for this class and add the
following VM option:

-Dlogback.configurationFile=chapter13/src/main/resources/logback.xml and run
it again.

The gc.log contents should look a lot like the snippet depicted in Listing 13-10:

INFO c.a.b.t.InfiniteSingerGenerator - JVM created: Acnefqlspvwekzq

INFO c.a.b.t.InfiniteSingerGenerator - JVM created: izyfkluhimlpkt

INFO c.a.b.t.InfiniteSingerGenerator - JVM created: Tcyrpvgyfbpobym

INFO c.a.b.t.InfiniteSingerGenerator - JVM created: Akmvyeazowdavpy

INFO c.a.b.t.Singer - GC Destroyed: Kjidllzezjjdjge after 1 seconds

INFO c.a.b.t.InfiniteSingerGenerator - JVM created: Llsghambpgetl c

INFO c.a.b.t.Singer - GC Destroyed: Bffmcezvrzflhlh after 1 seconds

INFO c.a.b.t.InfiniteSingerGenerator - JVM created: Pg vjmfwzhujzv

INFO c.a.b.t.Singer - GC Destroyed: wrlaqutybuzvsj after 1 seconds

INFO c.a.b.t.InfiniteSingerGenerator - JVM created: Kdzlsyiteskleka

INFO c.a.b.t.Singer - GC Destroyed: Lqzdgeqqguitbgg after 1 seconds

INFO c.a.b.t.Singer - GC Destroyed: Ddpzqlbiryelzvr after 1 seconds

INFO c.a.b.t.Singer - GC Destroyed: Ozkzfubi vpmj after 1 seconds

INFO c.a.b.t.InfiniteSingerGenerator - JVM created: Uegz isigjcrlfj

...

Listing 13-10 The gc.log File Showing the finalize() Method in Class Singer Being Called

When you have the �ile you can open it and start analyzing its contents, but because IntelliJ might not
open such a big �ile, try to open it with a specialized text editor like Notepad++ or Sublime. Or, if you use a
Unix/Linux operating system, just open your console and use the grep command like this:

grep -a 'seconds' gc.log

This will display all log entries printed when the finalize() method is called. Then you can select the
name of an instance and do something like this:

$ grep -a 'Lybhpococssuoz' gc.log

INFO c.a.b.c.Main - JVM created: Lybhpococssuoz

INFO c.a.b.c.Singer - GC Destroyed: Lybhpococssuoz after 7 seconds

As you can see, the time it takes for a Singer instance to be deleted from the heap varies, and this is
because the GC is called randomly; the developer has no control over it. There is a way to explicitly request
garbage collection to be done— well, two ways. You can call: System.gc() or

Runtime.getRuntime().gc().

System.gc() calls Runtime.getRuntime().gc() anyway.
This doesn’t mean that the GC will immediately start cleaning up the memory, though; it is more like a

suggestion to the JVM that it should make an effort to recycle unused objects and reclaim unused memory,
because it is being needed.

Now, back to the finalize() method. It was mentioned that it was marked as deprecated in Java 9.
This method is meant to be overridden by classes that handle resources that are stored outside of the heap.
The obvious example here are the I/O handling classes, used to read resources as �iles or URLs and
databases. The finalize() would be called by the JVM when an object can no longer be accessed by any
alive thread of the running application, to make sure that those resources were released and available for
other external and unrelated programs to use.

 In older versions of Apache Tomcat (a Java based web server) on Windows there was a bug related to
release of resources. When the server would crash or would be stopped forcefully, it couldn’t be started
again because some of its log �iles handlers were not released properly, and the new server instance could
not get access to them to start writing the new log entries. (This is an observation from my personal
experience when working with Apache Tomcat on Windows from a long, long time ago.)

With the introduction of the java.lang.AutoCloseable interface in JDK 1.7, the finalize()
method became less and less used. A few problems with this method have been mentioned previously, but
the following list gives more context:

The JVM cannot guarantee which thread will call this method for any given object, so any thread that has
access to it can call it, and we might end up with resources being released while the object is still needed.

The method is public, and thus it can be called explicitly in the code even if it is supposed to be called only
by the GC thread.
What happens if the custom implementation is not correct, throws exceptions, or does not release
resources properly?
The finalize() method should be called only once by the JVM, but this cannot be guaranteed.
Another downside is that finalize() calls are not automatically chained, so a custom implementation
of a finalize() method must always explicitly call the finalize() method of the superclass.
Another problem that was previously mentioned: once a finalize() was called, there is no way to stop
the method from executing or undo its effect, so you are basically left with a reference to an object that no
longer exists.

As you have probably �igured out by now, there is a lot of freedom given to the developer when it comes
to implementing this method, and this means there is a lot of room for errors to happen.

This is why the �inalization mechanism in Java is �lawed and was deprecated in JDK 9 to discourage its
use. Improper finalize() implementations could lead to:

memory leaks (memory contents are not discarded)
deadlocks (resource is blocked by two processes)
hangs (process is in a waiting state it cannot go out of)

In order to help with memory management, the java.lang.ref.Cleaner class was introduced in
Java 9. Before getting into that, I must show you how to check out that status of your memory
programatically.

Heap Memory Statistics
The Runtime class is quite useful when trying to interact with the internals of the JVM while a program is
running. As previously mentioned in this chapter, its gc() method can be called to suggest to the JVM that
the memory should be cleaned, and a few chapters ago we used methods in this class to start processes from
the Java code. There are three methods in this class are useful to see the status of the memory assigned to a
Java program:

runtime.maxMemory() returns the maximum amount of memory the JVM will attempt to use for its
heap, in case of need. The value returned by this method varies from machine to machine and is being set
implicitly to a quarter of the total existing RAM memory on the machine, unless is set it is set explicitly by
using the following JVM option -Xmx followed by the amount of memory (e.g., -Xmx8G will allow the JVM
to use a maximum of 8 GB of memory).
runtime.totalMemory() returns the total amount of memory of the JVM. The value returned by this
method varies from machine to machine too and is implementation-dependent, unless explicitly set by
using the following JVM option -Xms followed by the amount of memory (e.g., -Xms1G will tell the JVM
that is the initial size of its heap memory should be 1 GB of memory).
runtime.freeMemory() returns an approximation of the amount of free memory for the Java Virtual
Machine. Using the runtime.totalMemory() and the runtime.freeMemory() methods we can
write some code to check how much of our memory is occupied at various times during the execution of
the program. For this a class named MemAudit is created that will use the current logger to print memory
values. The implementation of this class is shown in Listing 13-11.

package com.apress.bgn.thirteen.util;

import org.slf4j.Logger;

public class MemAudit {

 private static final long MEGABYTE = 1024L * 1024L;

 private static final Runtime runtime = Runtime.getRuntime();

 public static void printBusyMemory(Logger log) {

 long memory = runtime.totalMemory() - runtime.freeMemory();

 log.info("Occupied memory: {} MB", (memory / MEGABYTE));

 }

 public static void printTotalMemory(Logger log) {

 log.info("Total Program memory: {} MB",

(runtime.totalMemory()/MEGABYTE));

 log.info("Max Program memory: {} MB",

(runtime.maxMemory()/MEGABYTE));

 }

}

Listing 13-11 The MemAudit Class Shown Memory Statistics During the Execution of a Java Application

The methods of this class will be called during the execution of our program, as shown in Listing 13-12.

package com.apress.bgn.thirteen;

// some imports omitted

import static com.apress.bgn.thirteen.MemAudit.*;

public class MemAuditDemo {

 private static final Logger log =

LoggerFactory.getLogger(MemAuditDemo.class);

 private static NameGenerator nameGenerator = new NameGenerator();

 private static final Random random = new Random();

 public static void main(String... args) {

 printTotalMemory(log);

 int count =0;

 while (true) {

 genSinger();

 count++;

 if (count % 1000 == 0) {

 printBusyMemory(log);

 }

 }

 }

 private static void genSinger() {

 Singer s = new Singer(nameGenerator.genName(), random.nextDouble(),

LocalDate.now());

 log.info("JVM created: {}", s.getName());

 }

}

Listing 13-12 The MemAuditDemo Class Using the Class in Listing 13-11 to Print Memory Statistics in the Console

After we delete the old log �ile we should run this class, and leave it running for a while. Since it will be
impossible again to see the output, this command

grep -a 'memory' gc.log

is useful to extract all lines containing the ‘memory’ word, and the result should look quite similar to one
in Listing 13-13.

$ grep -a 'memory' gc.log

INFO c.a.b.t.MemAuditDemo - Total Program memory: 260 MB

INFO c.a.b.t.MemAuditDemo - Max Program memory: 4096 MB

INFO c.a.b.t.MemAuditDemo - Occupied memory: 21 MB

INFO c.a.b.t.MemAuditDemo - Occupied memory: 7 MB

INFO c.a.b.t.MemAuditDemo - Occupied memory: 12 MB

...

INFO c.a.b.t.MemAuditDemo - Occupied memory: 98 MB

INFO c.a.b.t.MemAuditDemo - Occupied memory: 104 MB

...

Listing 13-13 Memory Statistics Printed By Methods in the MemAudit Class During Java Application Execution

The max memory is 4096MB, which means my machine has a total of 16 GB of RAM and the occupied
memory is very little, not even close to the initial 260MB the JVM is given to use. If we want to see real
memory being occupied we can modify the genSinger() method to return the created references and add
them to a list. Since the Singer instances are referenced in the main class, the memory is no longer
emptied. The modi�ications mentioned previously are shown in Listing 13-14.

import com.apress.bgn.thirteen.util.NameGenerator;

// some import statements omitted

import java.util.ArrayList;

import java.util.List;

import static com.apress.bgn.thirteen.util.MemAudit.*;

public class MemoryConsumptionDemo {

 private static final Logger log =

LoggerFactory.getLogger(MemoryConsumptionDemo.class);

 private static NameGenerator nameGenerator = new NameGenerator();

 private static final Random random = new Random();

 public static void main(String... args) {

 printTotalMemory(log);

 List<Singer> singers = new ArrayList<>();

 for (int i = 0; i < 1_000_000; ++i) {

 singers.add(genSinger());

 if (i % 1000 == 0) {

 printBusyMemory(log);

 }

 }

 }

 private static Singer genSinger() {

 Singer s = new Singer(nameGenerator.genName(), random.nextDouble(),

LocalDate.now());

 log.info("JVM created: {}", s.getName());

 return s;

 }

}

Listing 13-14 Saving the Singer Instances to a List to Avoid Them Being Collected by the GC and the Memory Cleared

After running the previous program, we can actually see the memory being used gradually increasing. A
look in the log �iltered magically by grep will show us that the program keeps the memory occupied until its
end, since the references now are saved into the List<Singer> instance, as shown in Listing 13-15.

$ grep -a 'memory' gc.log

INFO c.a.b.t.MemoryConsumptionDemo - Total Program memory: 260 MB

INFO c.a.b.t.MemoryConsumptionDemo - Max Program memory: 4096 MB

INFO c.a.b.t.MemoryConsumptionDemo - Occupied memory: 14 MB

INFO c.a.b.t.MemoryConsumptionDemo - Occupied memory: 17 MB

INFO c.a.b.t.MemoryConsumptionDemo - Occupied memory: 19 MB

INFO c.a.b.t.MemoryConsumptionDemo - Occupied memory: 22 MB

...

INFO c.a.b.t.MemoryConsumptionDemo - Occupied memory: 99 MB

INFO c.a.b.t.MemoryConsumptionDemo - Occupied memory: 101 MB

INFO c.a.b.t.MemoryConsumptionDemo - Occupied memory: 104 MB

...

INFO c.a.b.t.MemoryConsumptionDemo - Occupied memory: 474 MB

INFO c.a.b.t.MemoryConsumptionDemo - Occupied memory: 477 MB

Listing 13-15 Memory Statistics Printed By Methods in the MemAudit Class During a Java Application Execution Where Instances Are
Saved to a List<Singer>

And as we print the occupied memory every 1,000 steps, we can draw the conclusion that 1,000 Singer
instances occupy approximatively 2 MB. The preceding code no longer uses an in�inite loop to generate
instances; if it did, at some point the program would abruptly crash, throwing the following exception:

Exception in thread "main" java.lang.OutOfMemoryError: Java heap space

 at chapter.thirteen/com.apress.bgn.thirteen.MemoryConsumptionDemo

 .genSinger(MemoryConsumptionDemo.java:64)

 at chapter.thirteen/com.apress.bgn.thirteen.MemoryConsumptionDemo

 .main(MemoryConsumptionDemo.java:55)

Remember the value returned by the runtime.maxMemory()? On my machine, it was 4096MB. If I
look in the console, right before the exception just depicted, here is what I see:

INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 4094 MB

INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 4094 MB

INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 4095 MB

INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 4095 MB

INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 4095 MB

So the JVM was struggling to create another Singer instance, but there was no more memory left. The last
value printed before the exception was 4095MB, which is 1 MB less than 4096MB the maximum amount of
memory that the JVM was allowed to use. So the poor JVM crashed because there was no more heap memory
available. If a program ever ends like that, the problem is always in the design of the solution. The values for
total and maximum memory for the JVM can also in�luence the behavior of the GC as well. The -Xms and -
Xmx introduced previously are quite important, as they decide the initial and the maximum size of the heap
memory. Con�igured properly they can increase performance, but when unsuitable values they have the
adverse effect. For example, never set an initial size for the heap too small, because if there is not enough
space to �it all objects created by the application the JVM has to allocate more memory, basically rebuilding
the heap repeatedly during the execution of the program. So if this happens a few times during the
application run, the overall time consumption will be affected. The maximum size for the heap is very
important: allocate too little the application will crash, allocating too much might hinder other programming
from running. Deciding these values is usually done through repeated experiments and starting with JDK 11,
the new Epsilon garbage collector comes quite in handy for this purpose.

If you want to learn more about GC tunning, usually the best documentation is the of�icial one
(https://docs.oracle.com/en/java/javase/17/gctuning).

Now that you know what to expect from the GC, let’s see other methods of customizing its behavior so
problems are avoided.

Using Cleaner
Because of the necessity to ensure backward compatibility, it is not clear when the finalize() method is
to be taken out of the JDK. If needed, classes can be developed to implement
java.lang.AutoCloseable and provide an implementation for the close() method and make sure
you use your objects in a try-with-resources statement. If you want to avoid implementing the
interface there is another way: use a java.lang.ref.Cleaner object. This class can be instantiated, and
objects can be registered to it together with an action to perform when the object is being discarded by the
garbage collector. Using a Cleaner instance, the previous code can be written as depicted in Listing 13-16:

https://docs.oracle.com/en/java/javase/17/gctuning

package com.apress.bgn.thirteen.cleaner;

// some import statements omitted

import java.lang.ref.Cleaner;

public class CleanerDemo {

 private static final Logger log =

LoggerFactory.getLogger(CleanerDemo.class);

 public static final Cleaner cleaner = Cleaner.create();

 private static NameGenerator nameGenerator = new NameGenerator();

 public static void main(String... args) {

 printTotalMemory(log);

 int count = 0;

 for (int i = 0; i < 100_000; ++i) {

 genActor();

 count++;

 if (count % 1000 == 0) {

 printBusyMemory(log);

 System.gc();

 }

 }

 //filling memory with arrays of String to force GC to clean up Actor

objects

 for (int i = 1; i <= 10_000; i++) {

 String[] s = new String[10_000];

 try {

 Thread.sleep(1);

 } catch (InterruptedException e) {

 }

 }

 }

 private static Cleaner.Cleanable genActor() {

 Actor a = new Actor(nameGenerator.genName(), LocalDate.now());

 log.info("JVM created: {}", a.getName());

 Cleaner.Cleanable handle = cleaner.register(a, new

ActorRunnable(a.getName(), log));

 return handle;

 }

 static class ActorRunnable implements Runnable {

 private final String actorName;

 private final Logger log;

 public ActorRunnable(String actorName, Logger log) {

 this.actorName = actorName;

 this.log = log;

 }

 @Override

 public void run() {

 log.info("GC Destroyed: {} ", actorName);

 }

 }

}

Listing 13-16 Using a Cleaner Instance

Because we wanted to make it easier for you to browse the code, as all these sources are part of the same
project, we are using here a class modelling an Actor instead of a Singer— but no worries, the
implementation is quite similar. The Cleaner instance has a method named register(..) that is called
to register the action to be performed when the object is cleaned. The action to be performed is speci�ied as
a Runnable instance, and the decision to create a class by implementing it, ActorRunnable in this
example, was taken so that we could save the name of the object to be destroyed into a �ield without actually
keeping a reference to the object to be destroyed, otherwise the Cleaner.Cleanable handle would not
be used by the GC during the execution of the program, as the object would appear as if it still had references
to it. The cleaner.register(..) method returns an instance of type Cleaner.Cleanable that can
be used to explicitly perform the action, by calling the clean() method. This is the method called by the
JVM when the object is deleted from memory, when no longer used. If you run the preceding code, the
printed log would look pretty similar to the one in Listing 13-17.

INFO c.a.b.t.c.CleanerDemo - Total Program memory: 260 MB

INFO c.a.b.t.c.CleanerDemo - Max Program memory: 4096 MB

INFO c.a.b.t.c.CleanerDemo - JVM created: Nuyktryvtkewiwd

INFO c.a.b.t.c.CleanerDemo - JVM created: Brqivlsbvmteihz

INFO c.a.b.t.c.CleanerDemo - JVM created: Qzvopg ophjcyho

...

INFO c.a.b.t.c.CleanerDemo - Occupied memory: 17 MB

INFO c.a.b.t.c.CleanerDemo - JVM created: Jrliwbjadztvwdm

INFO c.a.b.t.c.CleanerDemo - JVM created: Evdteelpzinfcfh

INFO c.a.b.t.c.CleanerDemo - JVM created: Hozfatszogfvzfz

...

INFO c.a.b.t.c.CleanerDemo - GC Destroyed: Giqojswtuqzs s

INFO c.a.b.t.c.CleanerDemo - GC Destroyed: Lzdjorokvyzwdu

INFO c.a.b.t.c.CleanerDemo - JVM created: Igmzjiypo ttkzw

INFO c.a.b.t.c.CleanerDemo - JVM created: Ljmksqzhzzhuzwl

INFO c.a.b.t.c.CleanerDemo - GC Destroyed: Fny tnsffvyuisp

INFO c.a.b.t.c.CleanerDemo - GC Destroyed: Qzillviekynpkec

...

Listing 13-17 Log Printed By an Execution Using a Cleaner Instance to Free Up Memory

So the same result as using finalize() was obtained, but without implementing a deprecated
method.

 As a good practice to take from here, if you are writing your application using Java 9+, avoid using

finalize(), because this method is clearly on the path toward being removed. Use Cleaner and you
might have less of a hassle when upgrading the Java version your application is using.

Preventing GC from Deleting an Object
In the two previous sections we focused on objects that were eligible for garbage collection. In an
application there are objects that should not be discarded while the program runs, because they are needed.
The most obvious references in our classes that were discarded only at the end of the execution were the
static �ields, and they are �inal, so they cannot be reinitialized.

private static final Logger log =

LoggerFactory.getLogger(CleanerDemo.class);

public static final Cleaner cleaner = Cleaner.create();

private static NameGenerator nameGenerator = new NameGenerator();

private static final Random random = new Random();

The problem with these static values, however, is that they occupy the memory. What if your application
uses a big Map<K,V> that contains a dictionary that is not even needed right when the application starts?
To solve this, enter the Singleton design pattern. The Singleton pattern is a speci�ic design of a class
that ensures the class will only be instantiated once during the execution of the program. This is done by
hiding the constructor (declare it private), and declaring a static reference of the class type and a static
method to return it. There is more than one way to write a class according to the Singleton pattern , but
the most common way is depicted in Listing 13-18.

package com.apress.bgn.thirteen;

// some import statements omitted

import java.util.HashMap;

import java.util.Map;

public final class SingletonDictionary {

 private static final Logger log =

LoggerFactory.getLogger(SingletonDictionary.class);

 private Map<String, String> dictionary = new HashMap<>();

 private static final SingletonDictionary instance = new

SingletonDictionary();

 private SingletonDictionary() {

 // init dictionary

 log.info("Starting to create dictionary: {}",

System.currentTimeMillis());

 final NameGenerator keyGen = new NameGenerator(20);

 final NameGenerator valGen = new NameGenerator(200);

 for (int i = 0; i < 100_000; ++i) {

 dictionary.put(keyGen.genName(), valGen.genName());

 }

 log.info("Done creating dictionary: {}",

System.currentTimeMillis());

 }

 public synchronized static SingletonDictionary getInstance(){

 return instance;

 }

}

Listing 13-18 SingletonDictionary Class

In the previous code we simulated a dictionary with 100,000 entries, all generated by a modi�ied version
of the NameGenerator class. Log messages were printed in its constructor to be really obvious when the
instance is created. There are four things you have to remember about the Singleton pattern :

the constructor must be private, as it should not be called outside the class
the class must contain a static reference to an object of its type that can be initialized in place by calling
the private constructor
a method to retrieve this instance must be de�ined, so it has to be static
the method to retrieve the static instance also has to be synchronized so no two threads can call it at the
same and gain access to the instance, because the core idea of the Singleton pattern is to allow the class to
be instantiated only once during the duration of the execution of the program and ensure that no
concurrent access is allowed, as it might lead to unexpected behavior. There are multiple ways to initialize
and work with a Singleton, feel free to do your own research.

In a singleton class a static reference to an instance is created, and this static reference prevents the
garbage collector from cleaning up this instance during the execution of the program. This is because a static
reference is a class variable, and classes are the last to be deleted by the GC, toward the end of the program

execution. To test this, we’ll write a main class that declares a Cleaner instance and register a Cleanable
for the SingletonDictionary instance. The main method will create a lot of String array to �ill up the
memory to try to convince the GC to delete the SingletonDictionary instance, and we’ll even set its
own reference to it to null, as depicted in Listing 13-19.

package com.apress.bgn.thirteen;

// import statements omitted

public class SingletonDictionaryDemo {

 public static final Cleaner cleaner = Cleaner.create();

 private static final Logger log =

LoggerFactory.getLogger(SingletonDictionaryDemo.class);

 public static void main(String... args) {

 log.info("Testing SingletonDictionary...");

 //filling memory with arrays of String to force GC

 for (int i = 1; i <= 10_000; i++) {

 String[] s = new String[10_000];

 try {

 Thread.sleep(1);

 } catch (InterruptedException e) {

 }

 }

 SingletonDictionary singletonDictionary =

SingletonDictionary.getInstance();

 cleaner.register(singletonDictionary, ()-> {

 log.info("Cleaned up the dictionary!");

 });

 // we delete the reference

 singletonDictionary = null;

 //filling memory with arrays of String to force GC

 for (int i = 1; i <= 10_000; i++) {

 String[] s = new String[10_000];

 try {

 Thread.sleep(1);

 } catch (InterruptedException e) {

 }

 }

 log.info("DONE.");

 }

}

Listing 13-19 SingletonDictionaryDemo Class

If we run the previous code and expect to see the “Cleaned up the dictionary!” message in the console,
we’re expecting in vain. That static reference in the SingletonDictionary will not allow GC to touch
that object until the program ends. The static reference that we have in class SingletonDictionary is
also called a strong reference , because it prevents the object from being discarded from memory.

Using Weak References
Obviously, if there are strong references, we should be able to use weak references as well, for objects that
we actually want cleaned, right? Right.

In Java there are three classes can be used to hold a reference to an object that will not protect that
object from garbage collection. This is useful for objects that are too big, and it makes it inef�icient to keep

them in memory. With this kind of object it is worth the cost of time consumed to be reinitialized, because
keeping them in memory would slow done the overall performance of the application.

The three classes are:

java.lang.ref.SoftReference<T>: objects referred by this type of references are cleared at the
discretion of the garbage collector in response to memory demand. Soft references are most often used to
implement memory-sensitive caches.
java.lang.ref.WeakReference<T>: objects referred by this type of references do not prevent their
referents from being made �inalizable, �inalized, and then reclaimed. Weak references are most often used
to implement canonicalizing mappings. Canonicalizing mapping refers to containers where weak
references can be kept in and can be accessed by other objects, but their link to the container, does not
prevent them from being collected.
java.lang.ref.PhantomReference<T>: objects referred by these type of references are enqueued
after the collector determines that their referents may otherwise be reclaimed. Phantom references are
most often used to schedule postmortem cleanup actions.

Our SingletonDictionary contains a Map<K,V> that is actually the big object stored in memory.
This map can be wrapped in a WeakReference, since weak references are most often used to implement
canonicalizing mappings. We can write some logic, that when the dictionary instance is accessed, if it is not
there, it should be reinitialized. Because we need to access the map, the implementation will change a little,
aside from wrapping the Map<K,V> into a WeakReference. The new class, named WeakDictionary, is
depicted in Listing 13-20.

package com.apress.bgn.thirteen.util;

// other import statements omitted

import java.lang.ref.WeakReference;

public class WeakDictionary {

 private static final Logger log =

LoggerFactory.getLogger(WeakDictionary.class);

 private static WeakDictionary instance = new WeakDictionary();

 private static Cleaner cleaner;

 private WeakReference<Map<Integer, String>> dictionary;

 private WeakDictionary() {

 cleaner = Cleaner.create();

 dictionary = new WeakReference<>(initDictionary());

 }

 public synchronized String getExplanationFor(Integer key) {

 Map<Integer, String> dict = dictionary.get();

 if (dict == null) {

 dict = initDictionary();

 dictionary = new WeakReference<>(dict);

 return dict.get(key);

 } else {

 return dict.get(key);

 }

 }

 public WeakReference<Map<Integer, String>> getDictionary() {

 return dictionary;

 }

 public synchronized static WeakDictionary getInstance() {

 return instance;

 }

 private Map<Integer, String> initDictionary() {

 final Map<Integer, String> dict = new HashMap<>();

 log.info("Starting to create dictionary: {}",

System.currentTimeMillis());

 final NameGenerator valGen = new NameGenerator(200);

 for (int i = 0; i < 100_000; ++i) {

 dict.put(i, valGen.genName());

 }

 log.info("Done creating dictionary: {}",

System.currentTimeMillis());

 cleaner.register(dict, ()-> log.info("Cleaned up the dictionary!"));

 return dict;

 }

}

Listing 13-20 WeakDictionary Class

The getExplanationFor(..) is used to access the map and get the value corresponding a key.
Before doing that, however, we have to check if the Map<K,V> is still there. This is done by calling the
get() method on the dictionary reference which is of type WeakReference<Map<Integer,
String>>. If the map was not collected by the GC, the key is extracted and returned; otherwise, the
Map<K,V> is reinitialized and the weak reference is recreated. The Cleaner instance is used here as well,
and registered a Cleanable for the Map<K,V>, so we can see the map being collected. So how do we test
this? In a similar way that we tested SingletonDictionary. The WeakDictionaryDemo class is not
that different. The code is depicted in Listing 13-21.

package com.apress.bgn.thirteen;

import com.apress.bgn.thirteen.util.WeakDictionary;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

public class WeakDictionaryDemo {

 private static final Logger log =

LoggerFactory.getLogger(WeakDictionaryDemo.class);

 public static void main(String... args) {

 log.info("Testing WeakDictionaryDemo...");

 //filling memory with arrays of String to force GC

 for (int i = 1; i <= 10_000; i++) {

 String[] s = new String[10_000];

 try {

 Thread.sleep(1);

 } catch (InterruptedException e) {

 }

 }

 WeakDictionary weakDictionary = WeakDictionary.getInstance();

 //filling memory with arrays of String to force GC

 for (int i = 1; i <= 10_000; i++) {

 String[] s = new String[10_000];

 try {

 Thread.sleep(1);

 } catch (InterruptedException e) {

 }

 }

 log.info("Getting val for 3 = {}",

weakDictionary.getExplanationFor(3));

 log.info("DONE.");

 }

}

Listing 13-21 WeakDictionaryDemo Class

After retrieving the WeakDictionary reference, a lot of String arrays are created to force GC to
delete the map from memory. After that, we try to access the problematic map. Will it work?

INFO c.a.b.t.WeakDictionaryDemo - Testing WeakDictionaryDemo...

INFO c.a.b.t.u.WeakDictionary - Starting to create dictionary: 1629635325234

INFO c.a.b.t.u.WeakDictionary - Done creating dictionary: 1629635325485

INFO c.a.b.t.u.WeakDictionary - Cleaned up the dictionary!

INFO c.a.b.t.u.WeakDictionary - Starting to create dictionary: 1629635337852

INFO c.a.b.t.u.WeakDictionary - Done creating dictionary: 1629635338093

INFO c.a.b.t.WeakDictionaryDemo - Getting val for 3

= Lqcnaowqotkzlhckqepogpjdlgkjzenyzzoaunebjsc z nervebnbc

yjjlmuqkjaemmbtjbqzstjsssrwubwvfeoqfynyisba zclhf lep fdbsnm

cagubzodfpkepblslpypjwsybmwgptyznuymzgcdhkfydtibkjwgojjalctkrloatluakwwzppledh

INFO c.a.b.t.WeakDictionaryDemo - DONE.

Listing 13-22 WeakDictionaryDemo Log

The previous log proves this works, and not only that, we can see the map being discarded by GC and
then reinitialized when needed. This is that power of soft references.

The garbage collection process is un-deterministic, because it cannot be controlled much from the code.
A Java program cannot tell it to start, pause, or stop, but by using the appropriate VM options we can control
the resources it has. Using the proper implementation, from the code we can tell it what to collect or not,
and most times this is enough.2

Garbage Collections Exceptions and Causes
It was mentioned before that if objects cannot be discarded from the memory, an exception of type
OutOfMemoryError will be thrown. I’m not sure if you noticed, but OutOfMemoryError does not
actually extend java.lang.Exception, so calling it an exception is wrong. The exception class hierarchy
was mentioned in Chapter 5. In that hierarchy there was a class named java.lang.Error that
implements java.lang.Throwable, and it was mentioned that when these types of objects where
thrown by a program when there was a critical issue that the program cannot recover from. The full
hierarchy of the java.lang.OutOfMemoryError is depicted here.

java.lang.Object

 java.lang.Throwable

 java.lang.Error

 java.lang.VirtualMachineError

 java.lang.OutOfMemoryError

OutOfMemoryError is actually one of those ugly things you do not want thrown when your program is
running, because this means your program is actually no longer running. The reason why it is not running is
because it has no memory left to store new objects being created.

This error is being thrown by the JVM when anything goes wrong when doing memory management.
Although the most common cause is that the heap memory is depleted, there are other causes. When heap
memory allocated to the JVM is depleted, the error has the following message:

Exception in thread "main" java.lang.OutOfMemoryError: Java heap space

1

2

But there is another message that you might see:

Exception in thread "main" java.lang.OutOfMemoryError: GC Overhead Limit

Exceeded

This message is still related to the heap size. The error is thrown with this message when the data for the
program barely �its the size of the heap, so the heap is almost full, which allows the GC to run, but because it
cannot redeem any memory, the GC keeps running and it is actually hindering the normal execution of the
application. This message is added to the error when the GC spends 98% of execution time and the
application spends the other 2%.

These two are the most common error messages you will see when GC cannot do its job properly for
whatever reason. A complete list can be found at
https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/memleaks

002.html, but since most GC issues relate to the heap size, G1GC mostly throws errors with the Java heap
space messages.

Summary
This section ends this book. When it comes to the Java ecosystem, there are a lot of book and tutorials on the
Internet. This book only scratched the surface to give you a good starting point as a Java developer, and the
whole team that worked on it hopes it satis�ied your needs and raised your curiosity to fund out more. Just
keep in mind that there is no panacea solution to make sure the memory is always managed right, regardless
of the application scope. If you get into trouble, experimentation is always a step of determining the right
collector for your JVM.

This chapter has covered the following topics:

what garbage collection is and the steps involved
how the heap memory is structured
how many types of garbage collectors there are in the Oracle HotSpot JVM and how can we switch
between them
how to list all GC �lags and use them as VM options
how to view a garbage collector con�igurations and statistics using VM options
how to view the garbage collection in action using �inalize and Cleaner
how to stop the garbage collector from collecting important objects
how to create objects that are easily collected using soft references

Footnotes
This VM option replaced the deprecated -XX:+PrintGCDetails.

If you want more details about GC, see Oracle, “Getting Started with the G1 Garbage Collector,”

https://www.oracle.com/technetwork/tutorials/tutorials-1876574.html, accessed October 15, 2021.

https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/memleaks002.html
https://www.oracle.com/technetwork/tutorials/tutorials-1876574.html

APPENDICES
Appendix A
JDK 11 was released on September 25, 2018. Aside from all the novelties already covered in this book, there
was also the news that developers had been suspecting since the introduction of modules. Java is still free,
but the Oracle JDK isn’t. Developers can use the Oracle JDK to learn, but applications that are deployed in
production require a license.

The work-around is to use an OpenJDK build (https://adoptopenjdk.net), but this does not come
with Oracle support. JDK 17 is a major release that will bene�it from long-term support and if you are
curious about the Oracle terms of use, you can read them at
https://www.oracle.com/technetwork/java/javase/terms/license/javase-

license.html.
The Java world has changed, and Oracle restrictions causes the market to provide more options.

Companies like Zulu and IBM developed their own JDKs, Amazon has its own already,1 and all provide
support for JDKs that Oracle doesn’t. Probably more companies will emerge to provide cheaper support and
open-source JDKs. Now that access to an important resource has been restricted, humanity will do what it
does best—become creative to get access to it or develop similar resources. Either way, diversity will be
blooming in the following years for the Java open-source community, and I can barely wait to see what is
coming.

The purpose of this appendix is to gracefully end the book and to cover more advanced details regarding
Java modules that might not be suitable for a Java beginner developer right at the start of the book. It
contains an extended version of the modules section in Chapter 3, covering con�iguration of Java modules in
a complex project, good, bad, and recommended practices working with modules. The code snippets
mentioned in this appendix are already part of the project associated with the book. Enjoy!

Modules
Starting with Java 9 a new concept was introduced: modules.2 Java modules represent a more powerful
mechanism to organize and aggregate packages. The implementation of this new concept took more than 10
years. The discussion about modules started in 2005, and the hope was for them to be implemented for Java
7. Under the name Project Jigsaw an exploratory phase eventually started in 2008. Java developers hoped a
modular JDK will be available with Java 8, but that did not happen.

Modules �inally arrived in Java 9 after three years of work (and almost seven of analysis). Supporting
them delayed the of�icial release date of Java 9 to September 2017.3

A Java module is a way to group packages and con�igure more granulated access to package contents. A
Java module is a uniquely named, reusable group of packages and resources (e.g., XML �iles and other types
of non-Java �iles) described by a �ile named module-info.java, located at the root of the source
directory. This �ile contains the following information:

the module’s name
the module’s dependencies (that is, other modules this module depends on)
the packages it explicitly makes available to other modules (all other packages in the module are
implicitly unavailable to other modules)
the services it offers
the services it consumes
to what other modules it allows re�lection
native code
resources
con�iguration data

In theory, module naming resembles package naming and follows the reversed-domain-name
convention. In practice, just make sure the module name does not contain any numbers and that it reveals
clearly what its purpose is. The module-info.java �ile is compiled into a module descriptor, which is a
�ile named module-info.class that is packed together with classes into a plain old JAR �ile. The �ile is
locatedd at the root of the Java source directory, outside of any package. For the chapter03 project,

https://adoptopenjdk.net/
https://www.oracle.com/technetwork/java/javase/terms/license/javase-license.html

introduced earlier, the module-info.java �ile is located in the src/main/java directory, at the same
level with the com directory; the root of the com.apress.bgn.three package Figure A-1.

Figure A-1 Location of the module-info.java �ile

As any �ile with *.java extension, the module-info.java is compiled into a *.class �ile. As the module
declaration is not a part of Java type declaration, module is not a Java keyword, so it can still be used when
writing code for Java types; as a variable name, for example. For package the situation is different, as every
Java type declaration must start with a package declaration. Just take a look at the SimpleReader class
declared in Listing A-1.

package com.apress.bgn.three;

public class SimpleReader {

 private String source;

 // code omitted

}

Listing A-1 SimpleReader Class

You can see the package declaration, but where is the module? Well, the module is an abstract concept,
described by the module-info.java. So starting with Java 9, if you are con�iguring Java modules in your
application, Figure 3-4 (from the short version of Chapter 3) evolves into Figure A-2.

Figure A-2 Java modules represented visually

A Java module is a way to logically group Java packages that belong together.
The introduction of modules allows for the JDK to be divided into modules too. The java --list-

modules command lists all modules in your local JDK installation. Listing A-2 depicts the output of this
command executed on my personal computer where currently JDK 17-ea is installed.

$ java --list-modules

java.base@17-ea

java.compiler@17-ea

java.datatransfer@17-ea

java.desktop@17-ea

output omitted

Listing A-2 JDK 17-ea Modules

Each module name is followed by a version string @17-ea in the previous listing, which means that the
module belongs to Java version 17-ea.

So if a Java application does not require all modules, a runtime can be created only with the modules that
it needs, which reduces the runtime’s size. The tool to build a smaller runtime customized to an application
needs is called jlink and is part of the JDK executables. This allows for bigger levels of scalability and
increased performance. How to use jlink4 is not an object of this book. The focus of the book is learning
the Java programming language; thus the technical details of the Java platform will be kept to a minimum,
just enough to start writing and executing code con�idently.

There are multiple bene�its of introducing modules that more experienced developers have been waiting
for years to take advantage of. But con�iguring modules for bigger and more complex projects is no walk in
the park, and most software companies they either preffer to stick to JDK or to avoid con�iguring modules
altogether.

The contents of the module-info.java can be as simple as the name of the module and two brackets
containing the body, as shown in Listing A-3.

module chapter.three {}

Listing A-3 A Simple module-info.java Con�iguration

Advanced Module Con�igurations
A Java module declaration body contains one or more directives that are constructed using the
keywords in Table A-1. These directives represent access con�igurations and dependency requirements for
the packages and classes contained in the modules.

Table A-1 Java Module Directives

Directive Purpose

requires Speci�ies that the module depends on another module.

exports One of the module’s packages whose public types (and their nested public and protected types) should be accessible
to code in all other modules.

exports

... to
This is the quali�ied version of the exports directive. It enables specifying in a comma-separated list precisely which modules
or module code can access the exported package.

open Used at module level declaration (open module mm {}) and allows re�lective access to all module packages. Java Re�lection
is the process of analyzing and modifying all the capabilities of a class at runtime and works on private types and members too.
So before Java 9, nothing was really encapsulated.

opens Is used inside the body of a module’s declaration to selectively con�igure access through re�lection only to certain packages.

opens ...
to

This is the quali�ied version of the opens directive. It enables specifying in a comma-separated list precisely which modules or
module code can access its packages re�lectively.

uses Speci�ies a service used by this module—making the module a service consumer. A service in this case represents the full
name of a interface/abstract class that another module provides an implementation for.

provides

... with
Speci�ies that a module provides a service with a speci�ic implementation—making the module a service provider.

transitive Used together with requires to specify a dependency on another module and to ensure that other modules reading your
module also read that dependency—known as implied readability.

Modules can depend on one another. The project for this book is made of 13 modules, and most on
them depend on module chapter.zero. This module contains the basic components used to build more
complex components in the other modules. For example, classes inside module chapter.three need
access to packages and classes in module chapter.zero. Declaring a module dependency is done by using
the requires directive, as depicted in Listing A-4.

module chapter.three {

 requires chapter.zero;

}

Listing A-4 A Simple module-info.java Con�iguration

The preceding dependency is an explicit one. But there are also implicit dependencies. For example, any
module declared by a developer implicitly requires the JDK java.base module. This module contains the
foundational APIs of the Java SE Platform, and no Java application could be written without it. This implicit
directive ensures access to a minimal set of Java types, so basic Java code can be written. Listing A-4 is
equivalent to Listing A-5.

module chapter.three {

 requires java.base;

 requires chapter.zero;

}

Listing A-5 A Simple module-info.java Con�iguration with an Explicit Directive of requires java.base

 Declaring a module as required means that that module is required when the code is compiled—
frequently referred to as compile time and when the code is executed—frequently referred to as runtime.
If a module is required only at runtime, the requires static keywords are used to declare the dependency.
Just keep that in mind for now, it will make sense when we talk about web applications.

Now chapter.three depends on module chapter.zero. But does this mean chapter.three can
access all public types (and their nested public and protected types) in the all the packages in
module chapter.zero? If you are thinking that this is not enough, you are right. Just because a module
depends on another, it does not mean it has access to the packages and classes it actually needs to. The
required module must be con�igured to expose its insides. How can this be done? In our case, we need to

make sure module chapter.zero gives access to the required packages. This is done by customizing the
module-info.java for this module by adding the exports directive, followed by the necessary package
names. Listing A-6 depicts the module-info.java �ile for the chapter.zero module that exposes its
single package.

module chapter.zero {

 exports com.apress.bgn.zero;

}

Listing A-6 The module-info.java Con�iguration File for the chapter.zero Module

 Think about it like this: you are in your room cutting out Christmas decorations, and you need a

template for your decorations. Your roommate has all the templates. But just because you need it doesn’t
mean it will magically appear. You need to go and talk to your roommate. Needing your roommate’s
assistance can be viewed as the requires room-mate directive. After talking to your roommate, he will
probably say: Sure, come in, they are on the desk! Take as many as you need. This can be considered the
exports all-templates-on-desk directive. The desk is probably a good analogy for a package.

Using the con�iguration in listing A-6 we have just given access to the com.apress.bgn.zero
package, to any module con�igured with a requires module.zero; directive. What if we do not want
that? (Considering the previous tip, your roommate just left the door to his room open, so anybody can enter
and get those templates!)

What if we want to limit the access to module contents only to the chapter.three module? (So your
roommate has to give his templates only to you.) This can be done by adding the “to” keyword followed by
the module name to clarify, that only this module is allowed to access the components. This is the quali�ied
version of the exports directive mentioned in Table A-1.

 If you were curious and read the recommended Jar Hell5 article, you noticed that one of the concerns
of working with Java sources packed in Jars was security. This is because even without access to Java
sources, by adding a Jar as a dependency to an application, objects can be inspected, extended, and
instantiated. So aside from providing a reliable con�iguration, better scaling, integrity for the platform,
and improved performance, the goal for introduction of modules was in fact better security.

Listing A-7 depicts the module-info.java �ile for the chapter.zero module that exposes its single
package only to the chapter.three module.

module chapter.zero {

 exports com.apress.bgn.zero to chapter.three;

}

Listing A-7 Advanced module-info.java Con�iguration File for the chapter.zero Module

More than one module can be speci�ied to have access, by listing the desired modules separated by
commas, as depicted in Listing A-8.

module chapter.zero {

 exports com.apress.bgn.zero to chapter.two, chapter.three;

}

Listing A-8 Advanced module-info.java Con�iguration File for the chapter.zero Module with Multiple Modules

The order of the modules in an exports directive is not important. The order of packages being
exported by exports directives is not important either, and if there are a lot of them you can place them on
multiple lines. Just make sure to end the declaration with a ; (semicolon).

 Multiple packages cannot be exported using a single exports directive because this would lead to
con�licts in the different packages exported from different modules, which de�ies the purpose of
modularizing the code. So a construction like the following, using a wildcard to export multiple packages
is not supported.

module chapter.zero {

exports com.apress.bgn.* to chapter.two, chapter.three;

}

This is all good and well, and we can go even one step further. What if module chapter.three requires
access to a class de�ined in a module that is a dependency of chapter.zero? In technical language this is
called a transitive dependency because it is obviously more practical to use a dependency that is already
there, instead of declaring it again. Modules support this as well and the keyword to declare such a
dependency is (as you probably suspected): transitive.

For this scenario, we’ll make our module chapter.zero depend on external module of the LOG4J
(Apache Log4j 2) that is a simple library for logging of application behavior,6 but we also want any module
depending on chapter.zero to be able to use classes in the org.apache.logging.log4j module. In
this case, the contents of the module-info.java for module chapter.zero become the ones shown in
Listing A-9.

module chapter.zero {

 requires transitive org.apache.logging.log4j;

 exports com.apress.bgn.zero to chapter.three;

}

Listing A-9 module-info.java Con�iguration File for the chapter.zero Requiring a Dependency Being Shared with Its Dependents

By using requires transitive we have given read access to module
org.apache.logging.log4j to our chapter.three. This means that types in chapter.three can
be declared by making use of types de�ined in packages exported by module
org.apache.logging.log4j. To test this, class
com.apress.bgn.three.transitive.LoggingSample has been introduced in project chapter03.
This class uses a Log4j 2 logger to print a simple log message.

And this is where simple, basic things end. There are a few more module directives to cover, and it makes
sense to do so in this appendix, since they use notions spread all throughout this book. So here it goes.

In Java there is a feature named re�lection. Re�lection can be used to inspect a package and access
information of all its contents including private members. You can imagine that maybe this is not such a
good thing, especially in a productive application that requires higher levels of security. Plus, such a feature
makes it useless to have so many types of accessors, right? Up to Java 9 this is how things were, and using
re�lection leads to problems included in the Jar Hell category. By introducing modules, re�lection can be
restricted as well. As in, re�lection is no longer possible unless the module is con�igured to allow it. There are
three forms of the same directive that can be used to con�igure access using re�lection:

open is used at module declaration level and allows re�lective access to all packages in the module. A
con�iguration to allow re�lective access to all packages in module chapter.zero is depicted in Listing A-
10.

open module chapter.zero {

 requires transitive org.apache.logging.log4j;

 exports com.apress.bgn.ch0 to chapter.three;

}

Listing A-10 module-info.java Con�iguration File for the chapter.zero Allowing Re�lective to All Its Packages

opens is used inside the module declaration to selectively con�igure access through re�lection only to
certain packages. A con�iguration to allow re�lective access only to package
com.apress.bgn.three.helloworld is depicted in Listing A-11.

module chapter.three {

 requires chapter.zero;

 opens com.apress.bgn.three.helloworld;

}

Listing A-11 module-info.java Con�iguration File for the chapter.three Allowing Re�lective Access Only to Package
com.apress.bgn.three.helloworld

opens ... to is used inside the module declaration to selectively con�igure access through re�lection
only to certain packages and to a speci�ic module. It’s a little dif�icult to give an example here, but let’s
imagine this project uses Spring Boot.7 Spring Boot uses re�lection to instantiate objects of types de�ined
in our chapter.three module. A con�iguration to allow re�lective access only to package
com.apress.bgn.three.helloworld only to a speci�ic Spring module named spring.core is
depicted in Listing A-12.

module chapter.three {

 requires chapter.zero;

 requires spring.boot;

 requires spring.web;

 requires spring.context;

 requires spring.boot.autoconfigure;

 opens com.apress.bgn.three.helloworld to spring.core;

}

Listing A-12 module-info.java Con�iguration File for the chapter.three Allowing Re�lective Access Only to Package
com.apress.bgn.three.helloworld to a Module Named spring.core

Beside opening a package or a module for re�lection, the preceding directives also provide access to the
package’s (respectively all packages in the module) public types (and their nested public and protected
types) at runtime only.

If you are curious about how re�lection is used, take a look at class
com.apress.bgn.three.ReflectionDemo from project chapter03. This class inspects the
structure of the Base class and uses this knowledge to try to modify the value of a private �ield of a Base
instance. The code is depicted in Listing A-13.

package com.apress.bgn.three;

import com.apress.bgn.zero.Base;

import org.apache.logging.log4j.Logger;

import org.apache.logging.log4j.LogManager;

import java.lang.reflect.Field;

public class ReflectionDemo {

 private static final Logger LOGGER = LogManager.getLogger();

 public static void main(String... args) {

 //testing access to Base class from module chapter.zero

 Base base = new Base();

 LOGGER.info("Base object was created? > {} ", (base != null));

 //testing reflection

 try {

 Field field = base.getClass().getDeclaredField("secret");

 field.setAccessible(true); // make the private field accessible

 field.set(base, 1); // set the value of the private field

 base.printSecret(); // call public method to display value of

private field

 } catch (NoSuchFieldException nsf) {

 LOGGER.error("Field 'secret' cannot be accessed!");

 } catch (IllegalAccessException e) {

 LOGGER.error("Field 'secret' cannot be set!");

 }

 }

}

Listing A-13 the ReflectionDemo Class

Initially the attempt fails, and this exception is shown in the console:

Exception in thread "main" java.lang.reflect.InaccessibleObjectException: Unab

field private int com.apress.bgn.zero.Base.secret accessible: module chapter.z

"opens com.apress.bgn.zero" to module chapter.three

 at

java.base/java.lang.reflect.AccessibleObject.checkCanSetAccessible(AccessibleO

 at

java.base/java.lang.reflect.AccessibleObject.checkCanSetAccessible(AccessibleO

 at java.base/java.lang.reflect.Field.checkCanSetAccessible(Field.java:178)

 at java.base/java.lang.reflect.Field.setAccessible(Field.java:172)

 at chapter.three/com.apress.bgn.three.ReflectionDemo.main(ReflectionDemo.j

Edit the module-info.java in project chapter00 and remove the comment from line 9 (same line
from Listing A-11):

opens com.apress.bgn.zero to chapter.three;

This enables re�lection access to package com.apress.bgn.zero where the Base class is located. If
you run the ReflectionDemo class again, the exception is gone and instead, the value is set correctly as
shown by the execution of the base.printSecret() method . Expect to see the following message in the
console:

[main] INFO com.apress.bgn.three.ReflectionDemo - Base object was created?

> true

There are two directives left to cover that were too dif�icult to explain in Chapter 3, since they make
more sense after you understand Java a little more: uses and provides. Module declarations that contain
directives provides or provides... with are named service providers because these modules provide
a service implementation.

Java has a class named java.util.ServiceLoader that can be used to modularize an application
and load implementations of a service. What is a service in this case? It is a Java type that de�ines only a
contract, and that service providers need to provide a concrete implementation for.

 Essentially a service is modelled using an interface, and a service implementation is modelled by a

class implementing the interface. An interface can be compared with the earliest speci�ication version for
a car before being built; it covers what it should do, but not how. When the car is actually being built that
is the implementation part, when the how is decided. And cars do the same things, but in different ways
depending on their type of engine, for example. An electric car will have a different implementation

(under the hood) for the braking function (during braking electric cars also recharge their battery) than a
diesel based car. More about interfaces can be read in Chapter 4.

Assuming the service needed to be implemented is named NakedService , a module that contains a
class that provides an implementation for it is declared, as shown in Listing A-14.

// yes, import statements are supported in module configuration file

import com.apress.bgn.one.service.Provider;

import com.apress.bgn.zero.service.NakedService;

module chapter.one {

 requires chapter.zero;

 // needed for Appendix A.

 exports com.apress.bgn.one.service;

 provides NakedService with Provider;

}

Listing A-14 Module Providing an Implementation for the NakedService

By using the provides declarative like that, this module just became a service provider.
The module retrieves the service using the java.util.ServiceLoader<S> class and uses it; it is

called a service consumer. The ServiceLoader class is generic, and the S type provided as parameter is
the type of service(the interface type) the ServiceLoader tries to �ind and load from the project
classpath.

To declare the fact that a service consumer uses an implementation of that service, its module-
info.java must contain the directive con�iguration shown in Listing A-15.

import com.apress.bgn.zero.service.NakedService;

module chapter.three {

 requires chapter.zero;

 uses NakedService;

}

Listing A-15 Module Using an Implementation of the NakedService

You might ask now, but what is the difference from normally accessing module contents? If you noticed,
there is no requires chapter.one directive in the module con�iguration �ile depicted previously. Why?
Because when using services, it is only needed to have the module that provides the service type as a
dependency in the classpath, at runtime (this is done in this project by using Maven con�igurations in the
pom.xml �ile). This way module chapter.three does not really care who provides the implementation.
As long as it is there, it is retrieved by the java.util.ServiceLoader. Why is this important? Because
it decouples an application and removes explicit dependencies on concrete implementation (the module-
info.java for module chapter.three does not need to explicitly declare a dependency on module
chapter.one).

This is the Java simple way to support Inversion of Control.

 It was mentioned in the initial chapter that this book will introduce you into the core components of
programming, which are data structures, algorithms, design patterns, and most-used coding principles.
They will be explained as they come up in the book, so there is no prede�ined order or sequence that you
should expect.

To explain Inversion of Control, the Dependency Injection must be explained. The action performed by
any program (not only Java) is the result of interaction between its interdependent components, usually
named objects.

Dependency injection is a concept that describes how dependent objects are connected at runtime by an
external party. Look at Figure A-3. It describes two types of relationships between objects, and how those
objects “meet” each other.

Figure A-3 Object relationships and how they "meet"

Because object A that needs an object of type B to perform its functions, A depends on B.

Object A can directly create the object B - case (1): composition, or retrieves a reference to an existing
object itself - case (2):aggregation, but this ties them up together.

Dependency injection allows severing that tie by using an external party to provide an object of type B to
the object of type A - case (3), which is still aggregation, but with no direct ties and a twist.

Inversion of Control is a design principle in which generic reusable components are used to control
the execution of problem-speci�ic code, as in retrieving dependencies. Thus, you can say that the
java.util.ServiceLoader is a dependency handler used to perform dependency injection, and it
was designed following the inversion of control principle.8

This is where the under the hood section ends. I hope it has given you enough understanding of Java
organization of code and the reasons behind it that you will enjoy reading this book and experimenting with
code con�idently.

Before I digressed into explaining inversion of control and dependency injection, we had our service
provider—module chapter.one and our service consumer—module chapter.three con�igurations.
Looking at Listings A-14 and A-15, you might have noticed that both require chapter.zero. This is
because both provider and consumer must know what the API of the service is; the provider, so it can
implement it; and the consumer, so it can "consume" it, which in this case is to call its methods. The interface
modelling the API is declared in the chapter.zero module and is depicted in Listing A-16.

// in module 'chapter.zero'

package com.apress.bgn.zero.service;

public interface NakedService {

 String theSecret();

}

Listing A-16 The NakedService Interface

The service implementation provided by the Provider class in chapter.one module is depicted in
Listing A-17.

// in module 'chapter.one'

package com.apress.bgn.one.service;

import com.apress.bgn.zero.service.NakedService;

public class Provider implements NakedService {

 @Override

 public String theSecret() {

 return "I am the implementation of NakedService provided by module

'chapter.one'.";

 }

}

Listing A-17 The NakedService Implementation

The ServiceConsumerDemo class using the service in the chapter.three module is depicted in
Listing A-18.

// in module 'chapter.three'

package com.apress.bgn.three;

import com.apress.bgn.zero.service.NakedService;

import org.apache.logging.log4j.LogManager;

import org.apache.logging.log4j.Logger;

import java.util.ServiceLoader;

public class ServiceConsumerDemo {

 private static final Logger LOGGER = LogManager.getLogger();

 public static void main(String... args) {

 ServiceLoader<NakedService> loader =

ServiceLoader.load(NakedService.class);

 loader.findFirst().ifPresent(service -> LOGGER.info("Service found:

{}, with secret '{}'",service.getClass(), service.theSecret()));

 }

}

Listing A-18 The NakedService Implementation

When the module con�iguration is correct, running the class in the previous listing, the following
message is printed in the console:

[main] INFO com.apress.bgn.three.ServiceConsumerDemo - Service found: class

com.apress.bgn.one.service.Provider, with secret 'I am the implementation of

NakedService provided by module 'chapter.one'.'

Figure A-4 shows all the modules con�iguration �iles side by side, together with the Maven con�iguration
for the service consumer module (chapter.three):

Figure A-4 Service api, producer, and consumer module con�igurations

This concludes the advanced module con�igurations section. I hope you enjoyed it and will get to use this
knowledge soon.

Appendix B
If you’ve inspected the structure of the java-17-for-absolute-beginners project in IntelliJ IDEA you
might have noticed a Modules tab. If not, feel free to do it so from the menu: File ➤ Project Structure..., as
shown in Figure A-5.

Figure A-5 IntelliJ IDEA modules tab

You might think that the Modules tab is related to the Java modules, but that is not the case. This section
explains the existence of this tab.

Let’s consider a banking web application. It probably is quite complex, right? A lot of code must be
written to handle user requests, process banking transactions, and saving and retrieving data. Can you
imagine how this code is organized?

Most applications have three basic layers: presentation, services, and data access. Figure A-6 depicts this
common structure:

Figure A-6 The three most common layers of a Java application

In the simplest applications, each layer is represented by a subproject or module that contains all the
code used to perform a group of related operations. For example: all code in the presentation layer
implements functionalities for interaction with the user, processing user requests and transforming them
into calls for layers under it. Before there were Java modules, Java projects were themselves organized as
multimodule projects. That is why in IntelliJ IDEA there is a tab called Modules. If the project is con�igured
using a build tool such as Maven of Gradle, the modules in the IntelliJ IDEA Modules tab are the project
modules con�igured by the build tool.

As you’ve probably noticed in Figure A-5, the java-17-for-absolute-beginners project is
multimodular as well. The module names shown in the IntelliJ IDEA Modules tab are not the Java module
names con�igured in the module-info.java �iles, but the names of the Maven modules con�igured in
pom.xml �iles.

Index
A
Abstract classes
Abstraction
Abstract method
Abstract Window Toolkit (AWT)
accept() method
Access modi�iers

AnotherPropRequester
HiddenBase
Java class
member-level
PropProvider
top-level

AccountRepoImpl implementation
AccountRepoStub class
AccountServiceImpl#createAccount(..) method
AccountServiceTest unit test class
Actor class
Actor interface
Advanced module con�igurations
allMatch(..)
AND operator
Annotations
Anonymous classes
AnotherPropRequester
anyMatch(..) method
Apache Maven
Apache Tomcat server
Application classpath
Application programming interface (API)
ArrayDemo class
ArrayIndexOutOfBoundsException
Arrays
Arrays.sort(array)
Arrays.stream(array)
Arrays.toString(array)
Artist interface
assert keyword
Assertions, debug
Assignment operator
Autoboxing/unboxing
Automatic memory management

B
Back-pressure
badList variable
Bad recursive method
Base class
BaseMultiResolutionImage
base.printSecret() method
BasicHumanDemo Class
BigSortingSlf4jDemo Class
Binary numeric representation
Binary operators

/(divide)
-(minus)
%(modulus)
*(multiply)
+(plus/addition/concatenation)

Binary representation
Bitwise operators

AND
exclusive OR
inclusive OR
NOT

Block delimiters
Boilerplate code
Boolean type
break statement

Bubble sort algorithm
BufferedImage
BufferedInputStream
BufferedReader instance
BufferedWriter
buffer.rewind() method
builder() method
Build tools
ByteBuffer
Byte serialization

C
Calendar Class
Case sensitive
Catch block
CellFactory<T>
changed(..) method
Char type
Character
checkSize(..) method
children() method
Classes

abstraction and inheritance
Class variables
constructors
encapsulating data
enums
�ields
methods

Cleaner
ActorRunnable
deleting an object
free up memory
implementation
instance
register
SingletonDictionary class
SingletonDictionaryDemo class
WeakDictionary class
WeakDictionaryDemo class
WeakDictionaryDemo log
weak references

collect(..) operation
Collection<Integer> instance
Collections
ComboBox<T> value �ield
Compact import statements
compareTo(..) method
Comparison operators
computeAndPrintTtl() method call
com.sandbox Module con�iguration �ile
Concurrency speci�ic types
Concurrent mark sweep (CMS)
console.writer()
Constant
Constructors

contextPath
continue statement
Conventions
Core syntax
count()
createAccount(..) method
createNewFile() method

D
DatagramChannel
Date instance
Date Time API
Debugging

Java Process API
logging
See Logging
running Java application

jcmd
jconsole
jmc
jps

step-by-step
stream code
using assertions

default keyword
Default methods
delete(..) method
deleteByHolder(..) method
DELETE request type
@Deprecated annotation
Deserialization
Diamond class hierarchy
3-dimensional array
distinct() method
distinct() operation
Divide et Impera
Documenting
doGet(..) method
Dolphin
Double
do-while statement
dropWhile(..) method

E
Eden space
Elvis operator
Embedded Tomcat server
EmptyPerformerException class
EmptyPerformerException object
Empty streams creation
Encapsulation
Enumerations
Enums
Epsilon no-op collector
equals(..) method
Escape sequences

Escaping characters
EvenException type
Exceptions
ExceptionsDemo class
EXIF data
exists() method
Explicit constructors
Explicit type conversion (type)

F
Fake object
FakeAccountRepoTest test class
FakeDBConnection
Fiddler instance
Fields
FileChannel instance
FileFilter instance
File handlers
FileInputStream
FileOutputStream
Files utility methods
FileWriter
�ilter(..) method
�indAny()
�indFirst(..) method
�indOne(..) method
Finite streams creation
First survivor space (S0)
�latMap(..) method
Float
Floating-point types
Flowchart
Flowchart elements
�lush() method
forEach method
forEachOrdered(..)
for statement

counter modi�ication in termination condition
forEach loop
�lowchart
list
template
termination condition and counter modi�ication expression

Fully quali�ied names
@FunctionalInterface annotation
Functional interfaces

G
Garbage collection (GC)

cleaner
de�inition
elements
epsilon details
exceptions and causes
�inalize() method
G1GC �lags

G1GC VM options
genString()
heap memory statistics
in�inite number of Singer instances
Java stack and heap memory
memory capacity
Oracle Hotspot JVM architecture
parallel details
recycled
serial details
TLAB
types
UseG1GC
VM arguments
ZGC details

Garbage �irst (G1)
Gender enum
Generations
Generics
get() method
get pre�ix
getAbsolutePath() method
getChannel() method
getClass() method
getContentPane()
getDate()
getDay() method
getDayOfMonth()
getDayOfWeek() method
getDone()
getFilms() method
getInstalledLookAndFeels()
getInts(..) method
getMonth()
GET request type
getResolutionVariant(..)
getSchool()
getTimeToLive() method
getValueIsAdjusting() method
Git
Git installation
Graphician class
grep command �ilters

H
hashCode() method
Heap memory statistics

adverse effect
documentation
exception
MemAudit class
MemAuditDemo class
runtime.freeMemory()
runtime.maxMemory()
runtime.totalMemory()
Singer instances

HelloWorld class
hidden modi�ier
HiddenBase
Hidden classes
High-level programming language
HttpServlet abstract class
HttpServletRequest instance
Human Abstract Class
Human class
Human instance
Human#computeAndPrintTtl method
Human hierarchy

I
Identi�ier
if-else statement
IllegalStateException
Image processing API
Imperative coding style
Import section
Inclusive OR operator
indexOf method
Inheritance
inheritIO() method
InputMismatchException
InputStream instance
InsertionSort class
Installation

Git
Java IDE
Maven

instanceof operator
instanceof syntax
Instantiation
int array �ield
IntContainer
Integration tests
IntelliJ IDEA

breakpoints
duplicate package
“HelloWorld!” project
modules tab

Interface hierarchy
Interface reference types
Interfaces

annotation types
default methods
Hidden classes
Java hierarchy
private methods
record
Sealed classes
static methods and constants

Intermediate operations
Internationalization
International Software Testing Quali�ications Board

IntSorter hierarchy
IntSorter interface
IntStream instances
Inversion of control
isCreative() method
iterate(..) method

J, K
Java Development Kit (JDK)
Java Runtime Environment (JRE)
Java Architecture for XML Binding (JAXB)
Java AWT application
java.awt.event.ActionListener instance
Java code to machine code
Java coding conventions
Java comments
Java Community Process (JCP)
Java exception hierarchy
JavaFX

BorderPane
with button
colored ComboBox demo
ComboBox<T>
con�iguration Sample
init() method
internationalization
javafx.scene
properly positioned button
scene graph
setPrefWidth(200)
TextArea
window demo

JavaFX image classes
javafx.util.Callback interface
Java Grammar
JAVA_HOME Environment Variable

on Linux
on macOS
on Windows

Java installation
Java integer primitive types
Java IO
java.io.Console class
Java keywords
java.lang.AssertionError
java.lang.String class
Java Message Service (JMS)
Java module
Java module directives
Java Native Interface (JNI)
Java NIO
Java of�icial mascot
Java reference types
Java Runtime Environment (JRE)
Java SE 7
Java SE 8

Java SE 9
Java SE 10
Java SE 11
Java SE 12
Java SE 13
Java SE 14
Java SE 15
Java SE 16
java.util.Arrays
java.util.Date
java.util.Optional<T> instances
Java version
Java Virtual Machine
Java Virtual Machine (JVM) Debug Interface
jcmd
jconsole
JDK 17-ea Modules
JDK reactive streams API

AbstractProcessor
back-pressure
console output
exceptions
FilterCharProcessor
�ilters integers
�low execution
implementations
in�inite number of integers
MappingProcessor
microservices
onComplete() methods
pipeline complete implementation
processing �low
subscribe() method
subscriber
subscription
TCK
TransformerProcessor

JFrame.EXIT_ON_CLOSE constant
jlink
jmc command
jps
JShell

compiled and executed
conversions
failed variable declaration
Hello World!
indexOf method
JDK
method calling
REPL
statements and outputs
String variable
toupper() method
variable declaring
vars command

@JsonAutoDetect annotation

JsonMapper
JSON serialization
JSP page
JSP Standard Tag Library
JUL
JUnit

L
Lambda expressions
launch(..) method
lib directory
Library
LIFESPAN constant
LIFESPAN variable
Light-weight components
limit(..) method
Line terminators
list() method
List
List declarations
List object
listFiles() method
ListSelectionListener
LocalPropRequester
Local variables
Logback
Logger instance
Logging

divide and conquer
with JUL
SLF4J and logback
with System.out.print
writing log �iles

Logging API
logging.properties �ile
Logical operators
LongStream instances
Looping statements

do-while statement
for statement
while statement

M
main() method
Major garbage collection (major GC run)
map(..) method
MathSample class
Maven

installation
multilevel project structure
project view

Maven (Gradle too) module structure
Media API
Member-level accessors scope
Memory management
merge(..) method

MergeSort class
Merge sort algorithm
Merge-sort proposed implementation
Metadata
Method reference
Methods
Minor garbage collection (minor GC run)
Mocks
Modularization
module-info.class
module-info.java �ile
Modules

advanced con�igurations
module-info.java �ile
operator

Musician class
Musician constructor
Musician interface

N
NakedService

implementation
interface

Negation operator
Network debugger view
next() method
nextLine() method
Next survivor space (S1)
Nonblocking back-pressure
Nonblocking IO
noneMatch(..)
NotSerializableException
null keyword
NullPointerExceptions
Numerical operators

binary
See Binary operators
relational operations
unary

Numeric primitive types
Numeric stream instances

O
Object class
Object equality
Object-oriented programming (OOP)
Object types
ObservableValue<T> instance
Old generation space
onExit() method
Optional.get()
Optional<T> instances
orElseGet(..) method
orElse(T t) method
OutputStream
OutputStream class hierarchy

OutputStreamWriter
@Override annotation
Overriding

P, Q
package-info.java �ile
Packages

declaration
“HelloWorld” Class
manager

PannedJavaFxDemo class
Parallel collector
parent() method
Path instances
Path variable
Path handlers
Pattern instance
peek(..) method
Performer array
Performer class
Performer instance
Performer type
PerformerGenerator class
performer.getSchool() method
Permanent generation
permits keyword
Point-to-point (p2p) messaging model
Polymorphism
Portability
POST request type
Pre�ixed incrementor
Primitive data types
Primitive types

arrays
boolean type
char type
escaping characters
Java integer
numeric
real
reference
string type
wrapper classes

printFileStats(..) method
println method
PrintWriter
Prism
Private methods
Process API
ProcessBuilders
ProcessHandle
ProcessHandle.Info
ProcessListingDemo class
Producer/consumer system
Programming languages
Project reactor

PropProvider
Public static method
Publish-subscribe framework

back-pressure
components
�low interfaces
messaging style communication model
p2p model
producer/consumer system
project reactor
reactive manifesto
reactive producer/consumer system
reactive programming
reactive-streams
reactive streams API
See JDK reactive streams API
ways

Pure functions
PUT request type

R
RandomDurationThread
Raw headers
Reactive manifesto
Reactive producer/consumer system
Reactive programming
Reactive-streams
Reactive Streams Technology Compatibility Kit
ReadableByteChannel
Read-Eval-Print Loop (REPL)
Reading data

java.io.Console
java.util.Scanner
System.in

Reading �iles
�iles utility methods
InputStream
readers
Scanner

ReadingFromStdinUsingScannerDemo Class
ReadingUsingConsoleDemo class
readObject(..) method
readObjectNoData() method
Real primitive types
Record
reduce(..) method
Refactor button
Reference data types
Re�lection
Re�lectionDemo Class
Regression tests
Relational operations

comparison operators
== equals operator

Remote address
removeExifTag(..) method

Request method
Reserved Java keywords
Resource �iles contents
return statement
RollingFileAppender
Runnable interface
RuntimeException class

S
SampleServlet class
sandbox
Scanner class
sdf.parse(..) method
Sealed classes
Security
SecurityException
Serial collector
Serialization

byte
JSON
XML

ServiceConsumerDemo class
ServiceLoader class
setOnMouseClicked(..)
setPreserveRatio(..) method
SEVERE log message
Shenandoah garbage collector
Shift operators

>>> unsigned shift right
>> signed shift right
<< shift left

Sign operators
SimpleFormatter
SimpleReader class
Singleton pattern
skip(..) operation
smooth(..) method
SocketChannel
Song instances
sort(..) method
sorted() method
sorted() operation
Sorting class hierarchy
SortingJulDemo
SortingSlf4jDemo Class
SortingSlf4jDemo.main(..) method
Spider
Stack memory
Stack data structure
Stack memory
StackOver�lowError
start() method
static keyword
Static methods
Static constants
Static methods

Static variables
stream() method
Stream abstraction
Stream API

characteristics
creation

arrays
collections
empty streams
�inite streams

debugging code
interfaces
intermediate operation

distinct()
�ilter
limit(..)
map and �latMap
peek(..)
skip(..)
sorted

Optional<T> instances
terminal functions

allMatch(..)
anyMatch(..)
collect
count()
�indAny()
�indFirst
forEach and forEachOrdered
min(..) and max(..)
noneMatch(..)
sum() and reduce(..)
toArray

transform collections into streams
Stream of primitives
String class
String method
String object
String value
String variables
StringBuilder
String pool
String type
StringWriter
Strong reference
Stub
SubClassedProvider class
sum(..) method
Sun Microsystems
Supplier
swap(..) method
Swing application

BorderLayout
components
FlowLayout
JFrame class

JFrame instance
JTextArea
JTextArea instance
layouts
look-and-feels
module Con�iguration
simple title
valueChanged(..) method

Switch expression
Switch statement

enums values
expression
�lowchart
Java code
simpli�ied
string values
template
yield statements

Syntax
System.in.read()
System.out.print method family
System variables

T
takeWhile(..) method
Terminal operations
Testing

building application
fakes
JUnit
mocks
stubs

TestNG reactive publisher
TestNG test class
testNonNumericAmountVersionOne() method
testNonNumericAmountVersionTwo() method
this keyword
Thread class
Thread.currentThread()
Thread local allocation buffer (TLAB)
Thread.sleep(..)
Throwable
toArray(..)
top-level class
toString() method
toupper() method
Try block
try-catch statements
try-catch-�inally blocks
try-catch-�inally statement
try-multi-catch Statement
Type polymorphism

U
Unary operators

incrementors and decrementors

1

2

3

negation operator
sign operators

Unboxing
Unchecked exception
Uniform resource identi�ier
Unit tests
UNSPECIFIED element
urlPattern property
User interface

V
valueChanged(..) method
var keyword
Varargs
Variables

W
WARNING messages
Web application

Apache Tomcat server
embedded server
request types
standalone server
structure

while statement
Wrapper classes
WritableByteChannel
writeObject(..) method
Writer class hierarchy
Writing �iles

�iles utility methods
NIO
OutputStream
writer

X
XmlMapper instance
XML serialization
XOR operator

Y
Young generation area
Young generation space

Z
Z Garbage Collector (ZGC)

Footnotes
Amazon Corretto is a no-cost, multiplatform, production-ready distribution of the Open Java Development Kit (OpenJDK).

Build tools such as Maven or Gradle refer to subprojects as modules as well, but their purpose is different from the one of the Java modules.

The full history of the Jigsaw project can be found at OpenJDK, “Project Jigsaw,” http://openjdk.java.net/projects/jigsaw,

accessed October 15, 2021.

http://openjdk.java.net/projects/jigsaw

4

5

6

7

8

More information is available at Oracle, “Tools Reference,” https://docs.oracle.com/en/java/javase/11/tools/jlink.html,

accessed October 15, 2021.

A great article about the Jar Hell is available at Tech Read, “What Is Jar Hell?,” https://tech-read.com/2009/01/13/what-is-jar-

hell, accessed October 15, 2021 (but you might want to read it later, after you have written a little code of your own).

More details about it can be found at Apache, “Apache Log4j 2,” https://logging.apache.org/log4j/2.x, accessed October 15, 2021.

A very popular framework written in Java is Spring; Spring Boot is used to build production-ready Spring applications. Read more about it at

Spring, “Spring Boot,” https://spring.io/projects/spring-boot, accessed October 15, 2021.

Also known as the Hollywood Principle, or “Don’t call us, we’ll call you.”

https://docs.oracle.com/en/java/javase/11/tools/jlink.html
https://tech-read.com/2009/01/13/what-is-jar-hell
https://logging.apache.org/log4j/2.x
https://spring.io/projects/spring-boot

	Cover
	Front Matter
	1. An Introduction to Java and Its History
	2. Preparing Your Development Environment
	3. Getting Your Feet Wet
	4. Java Syntax
	5. Data Types
	6. Operators
	7. Controlling the Flow
	8. The Stream API
	9. Debugging, Testing, and Documenting
	10. Making Your Application Interactive
	11. Working With Files
	12. The Publish-Subscribe Framework
	13. Garbage Collection
	Back Matter

